详解Python 关联规则分析

作者:阿橙FM 时间:2023-09-03 11:54:18 

目录
  • 1. 关联规则

    • 1.1 基本概念

    • 1.2 关联规则Apriori算法

  • 2. mlxtend实战关联规则

    • 2.1 安装

    • 2.2 简单的例子

  • 3. 总结

    1. 关联规则

    大家可能听说过用于宣传数据挖掘的一个案例:啤酒和尿布;据说是沃尔玛超市在分析顾客的购买记录时,发现许多客户购买啤酒的同时也会购买婴儿尿布,于是超市调整了啤酒和尿布的货架摆放,让这两个品类摆放在一起;结果这两个品类的销量都有明显的增长;分析原因是很多刚生小孩的男士在购买的啤酒时,会顺手带一些婴幼儿用品。

    不论这个案例是否是真实的,案例中分析顾客购买记录的方式就是关联规则分析法Association Rules。

    关联规则分析也被称为购物篮分析,用于分析数据集各项之间的关联关系。

    1.1 基本概念

    • 项集:item的集合,如集合{牛奶、麦片、糖}是一个3项集,可以认为是购买记录里物品的集合。

    • 频繁项集:顾名思义就是频繁出现的item项的集合。如何定义频繁呢?用比例来判定,关联规则中采用支持度和置信度两个概念来计算比例值

    • 支持度:共同出现的项在整体项中的比例。以购买记录为例子,购买记录100条,如果商品A和B同时出现50条购买记录(即同时购买A和B的记录有50),那边A和B这个2项集的支持度为50%

    详解Python 关联规则分析

    • 置信度:购买A后再购买B的条件概率,根据贝叶斯公式,可如下表示:

    详解Python 关联规则分析

    提升度:为了判断产生规则的实际价值,即使用规则后商品出现的次数是否高于商品单独出现的评率,提升度和衡量购买X对购买Y的概率的提升作用。如下公式可见,如果X和Y相互独立那么提升度为1,提升度越大,说明X->Y的关联性越强

    详解Python 关联规则分析

    1.2 关联规则Apriori算法

    关联规则方法的步骤如下:

    • 发现频繁项集

    • 找出关联规则

    Apriori算法是经典的关联规则算法。Apriori算法的目标是找到最大的K项频繁集。Apriori算法从寻找1项集开始,通过最小支持度阈值进行剪枝,依次寻找2项集,3项集直到没有更过项集为止。

    下面是一个案例图解:

    详解Python 关联规则分析

    • 图中有4个记录,记录项有1,2,3,4,5若干

    • 首先先找出1项集对应的支持度(C1),可以看出4的支持度低于最小支持阈值,先剪掉(L1)。

    • 从1项集生成2项集,并计算支持度(C2),可以看出(1,5)(1,2)支持度低于最小支持阈值,先剪掉(L2)

    • 从2项集生成3项集,(1,2,3)(1,2,5)(2,3,5)只有(2,3,5)满足要求

    • 没有更多的项集了,就定制迭代

    2. mlxtend实战关联规则

    关联规则目前在scikit-learn中并没有实现。这里介绍另一个python库mlxtend。

    2.1 安装


    pip install mlxtend

    2.2 简单的例子

    来看下数据集:


    import pandas as pd

    item_list = [['牛奶','面包'],
        ['面包','尿布','啤酒','土豆'],
        ['牛奶','尿布','啤酒','可乐'],
        ['面包','牛奶','尿布','啤酒'],
        ['面包','牛奶','尿布','可乐']]

    item_df = pd.DataFrame(item_list)

    数据格式处理,传入模型的数据需要满足bool值的格式


    from mlxtend.preprocessing import TransactionEncode

    te = TransactionEncoder()
    df_tf = te.fit_transform(item_list)
    df = pd.DataFrame(df_tf,columns=te.columns_)

    详解Python 关联规则分析

    • 计算频繁项集


    from mlxtend.frequent_patterns import apriori

    # use_colnames=True表示使用元素名字,默认的False使用列名代表元素, 设置最小支持度min_support
    frequent_itemsets = apriori(df, min_support=0.05, use_colnames=True)

    frequent_itemsets.sort_values(by='support', ascending=False, inplace=True)

    # 选择2频繁项集
    print(frequent_itemsets[frequent_itemsets.itemsets.apply(lambda x: len(x)) == 2])  

    详解Python 关联规则分析

    • 计算关联规则


    from mlxtend.frequent_patterns import association_rules

    # metric可以有很多的度量选项,返回的表列名都可以作为参数
    association_rule = association_rules(frequent_itemsets,metric='confidence',min_threshold=0.9)

    #关联规则可以提升度排序
    association_rule.sort_values(by='lift',ascending=False,inplace=True)    
    association_rule
    # 规则是:antecedents->consequents

    详解Python 关联规则分析

    选择出来关联规则之后,根据提升度排序后,可能最高提升度的规则是在我们常识范围内,那这个规则的价值就不高。所以我们要在产生的规则中根据业务特点进行筛选,像开篇提到(啤酒->尿布)完全不同的品类之间的关联。

    笔者最近用关联规则分析用户的体检报告记录,也得出了关于各个病症的有意义的关联,如并发症,不同病症相互影响等。

    3. 总结

    本分介绍关联规则的基本概念和经典算法Apriori,以及python的实现库mlxtend使用。

    总结如下:

    • 关联规则用于分析数据集各项之间的关联关系,想一想啤酒和尿布的故事

    • 三个重要概念:支持度,置信度和提升度

    • Apriori通过迭代先找1项集,用支持度过滤项集,逐步找出所有k项集

    • 用置信度或提升度来选择满足的要求的规则

    • mlxtend对数据要求转换成bool值才可用

    来源:https://juejin.cn/post/6940506066513821703

    标签:python,关联规则,分析
    0
    投稿

    猜你喜欢

  • sql语句将数据库一条数据通过分隔符切割成多列方法实例

    2024-01-15 02:24:45
  • Python实现简单过滤文本段的方法

    2023-11-24 16:19:22
  • PHP实现异步定时多任务消息推送

    2023-05-25 09:51:29
  • PyCharm利用pydevd-pycharm实现Python远程调试的详细过程

    2022-01-22 19:54:26
  • 微信小程序仿今日头条导航栏滚动解析

    2024-04-29 13:55:42
  • python缩进长度是否统一

    2022-08-02 00:37:11
  • python实现单张图像拼接与批量图片拼接

    2023-07-28 12:33:36
  • python使用cartopy库绘制台风路径代码

    2023-08-22 15:50:18
  • Python机器学习之使用Pyecharts制作可视化大屏

    2022-06-05 09:17:41
  • Apache下禁止特定目录执行PHP 提高服务器安全性

    2023-10-25 20:10:50
  • SQL Server如何保证可空字段中非空值唯一

    2011-02-24 16:44:00
  • JavaScript Dom编程:介绍学习书籍

    2008-02-20 08:32:00
  • 如何获取机器的网络配置属性?

    2009-11-23 20:44:00
  • 解决hive中导入text文件遇到的坑

    2023-06-30 16:28:26
  • Oracle 日期的一些简单使用

    2009-08-05 20:42:00
  • Python imgaug库安装与使用教程(图片加模糊光雨雪雾等特效)

    2021-06-23 10:07:16
  • CSS的渲染效率:书写高效的CSS

    2008-11-13 16:55:00
  • Python3 shelve对象持久存储原理详解

    2022-06-30 13:43:39
  • ASP+AJAX做类似google的搜索提示

    2008-10-24 13:49:00
  • python异常处理和日志处理方式

    2023-04-25 09:36:54
  • asp之家 网络编程 m.aspxhome.com