Python爬虫之爬取我爱我家二手房数据

作者:勤奋的清风 时间:2023-08-11 01:35:06 

一、问题说明

首先,运行下述代码,复现问题:


# -*-coding:utf-8-*-
import re
import requests
from bs4 import BeautifulSoup
cookie = 'PHPSESSID=aivms4ufg15sbrj0qgboo3c6gj; HMF_CI=4d8ff20092e9832daed8fe5eb0475663812603504e007aca93e6630c00b84dc207; _ga=GA1.2.556271139.1620784679; gr_user_id=4c878c8f-406b-46a0-86ee-a9baf2267477; _dx_uzZo5y=68b673b0aaec1f296c34e36c9e9d378bdb2050ab4638a066872a36f781c888efa97af3b5; smidV2=20210512095758ff7656962db3adf41fa8fdc8ddc02ecb00bac57209becfaa0; yfx_c_g_u_id_10000001=_ck21051209583410015104784406594; __TD_deviceId=41HK9PMCSF7GOT8G; zufang_cookiekey=["%7B%22url%22%3A%22%2Fzufang%2F_%25E9%2595%25BF%25E6%2598%25A5%25E6%25A1%25A5%3Fzn%3D%25E9%2595%25BF%25E6%2598%25A5%25E6%25A1%25A5%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E9%95%BF%E6%98%A5%E6%A1%A5%22%2C%22total%22%3A%220%22%7D","%7B%22url%22%3A%22%2Fzufang%2F_%25E8%258B%258F%25E5%25B7%259E%25E8%25A1%2597%3Fzn%3D%25E8%258B%258F%25E5%25B7%259E%25E8%25A1%2597%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E8%8B%8F%E5%B7%9E%E8%A1%97%22%2C%22total%22%3A%220%22%7D","%7B%22url%22%3A%22%2Fzufang%2F_%25E8%258B%258F%25E5%25B7%259E%25E6%25A1%25A5%3Fzn%3D%25E8%258B%258F%25E5%25B7%259E%25E6%25A1%25A5%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E8%8B%8F%E5%B7%9E%E6%A1%A5%22%2C%22total%22%3A%220%22%7D"]; ershoufang_cookiekey=["%7B%22url%22%3A%22%2Fzufang%2F_%25E9%2595%25BF%25E6%2598%25A5%25E6%25A1%25A5%3Fzn%3D%25E9%2595%25BF%25E6%2598%25A5%25E6%25A1%25A5%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E9%95%BF%E6%98%A5%E6%A1%A5%22%2C%22total%22%3A%220%22%7D","%7B%22url%22%3A%22%2Fershoufang%2F_%25E8%258B%258F%25E5%25B7%259E%25E6%25A1%25A5%3Fzn%3D%25E8%258B%258F%25E5%25B7%259E%25E6%25A1%25A5%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E8%8B%8F%E5%B7%9E%E6%A1%A5%22%2C%22total%22%3A%220%22%7D"]; zufang_BROWSES=501465046,501446051,90241951,90178388,90056278,90187979,501390110,90164392,90168076,501472221,501434480,501480593,501438374,501456072,90194547,90223523,501476326,90245144; historyCity=["\u5317\u4eac"]; _gid=GA1.2.23153704.1621410645; Hm_lvt_94ed3d23572054a86ed341d64b267ec6=1620784715,1621410646; _Jo0OQK=4958FA78A5CC420C425C480565EB46670E81832D8173C5B3CFE61303A51DE43E320422D6C7A15892C5B8B66971ED1B97A7334F0B591B193EBECAAB0E446D805316B26107A0B847CA53375B268E06EC955BB75B268E06EC955BB9D992FB153179892GJ1Z1OA==; ershoufang_BROWSES=501129552; domain=bj; 8fcfcf2bd7c58141_gr_session_id=61676ce2-ea23-4f77-8165-12edcc9ed902; 8fcfcf2bd7c58141_gr_session_id_61676ce2-ea23-4f77-8165-12edcc9ed902=true; yfx_f_l_v_t_10000001=f_t_1620784714003__r_t_1621471673953__v_t_1621474304616__r_c_2; Hm_lpvt_94ed3d23572054a86ed341d64b267ec6=1621475617'
headers = {
   'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.72 Safari/537.36',
   'Cookie': cookie.encode("utf-8").decode("latin1")
}
def run():
   base_url = 'https://bj.5i5j.com/ershoufang/xichengqu/n%d/'
   for page in range(1, 11):
       url = base_url % page
       print(url)
       html = requests.get(url, headers=headers).text
       soup = BeautifulSoup(html, 'lxml')
       try:
           for li in soup.find('div', class_='list-con-box').find('ul', class_='pList').find_all('li'):
               title = li.find('h3', class_='listTit').get_text()  # 名称
               # print(title)
       except Exception as e:
           print(e)
           print(html)
           break
if __name__ == '__main__':
   run()

运行后会发现,在抓取https://bj.5i5j.com/ershoufang/xichengqu/n1/(也可能是其他页码)时,会报错:'NoneType' object has no attribute 'find',观察输出的html信息,可以发现html内容为:<HTML><HEAD><script>window.location.href="https://bj.5i5j.com/ershoufang/xichengqu/n1/?wscckey=0f36b400da92f41d_1621823822" rel="external nofollow" ;</script></HEAD><BODY>,但此链接在浏览器访问是可以看到数据的,但链接会被重定向,重定向后的url即为上面这个htmlhref内容。因此,可以合理的推断,针对部分页码链接,我爱我家不会直接返回数据,但会返回带有正确链接的信息,通过正则表达式获取该链接即可正确抓取数据。

二、解决方法

在下面的完整代码中,采取的解决方法是:

1.首先判断当前html是否含有数据

2.若无数据,则通过正则表达式获取正确链接

3.重新获取html数据


if '<HTML><HEAD><script>window.location.href=' in html:
url = re.search(r'.*?href="(.+)" rel="external nofollow"  rel="external nofollow" .*?', html).group(1)
html = requests.get(url, headers=headers).text

三、完整代码


# -*-coding:utf-8-*-
import os
import re
import requests
import csv
import time
from bs4 import BeautifulSoup
folder_path = os.path.split(os.path.abspath(__file__))[0] + os.sep  # 获取当前文件所在目录
cookie = 'PHPSESSID=aivms4ufg15sbrj0qgboo3c6gj; HMF_CI=4d8ff20092e9832daed8fe5eb0475663812603504e007aca93e6630c00b84dc207; _ga=GA1.2.556271139.1620784679; gr_user_id=4c878c8f-406b-46a0-86ee-a9baf2267477; _dx_uzZo5y=68b673b0aaec1f296c34e36c9e9d378bdb2050ab4638a066872a36f781c888efa97af3b5; smidV2=20210512095758ff7656962db3adf41fa8fdc8ddc02ecb00bac57209becfaa0; yfx_c_g_u_id_10000001=_ck21051209583410015104784406594; __TD_deviceId=41HK9PMCSF7GOT8G; zufang_cookiekey=["%7B%22url%22%3A%22%2Fzufang%2F_%25E9%2595%25BF%25E6%2598%25A5%25E6%25A1%25A5%3Fzn%3D%25E9%2595%25BF%25E6%2598%25A5%25E6%25A1%25A5%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E9%95%BF%E6%98%A5%E6%A1%A5%22%2C%22total%22%3A%220%22%7D","%7B%22url%22%3A%22%2Fzufang%2F_%25E8%258B%258F%25E5%25B7%259E%25E8%25A1%2597%3Fzn%3D%25E8%258B%258F%25E5%25B7%259E%25E8%25A1%2597%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E8%8B%8F%E5%B7%9E%E8%A1%97%22%2C%22total%22%3A%220%22%7D","%7B%22url%22%3A%22%2Fzufang%2F_%25E8%258B%258F%25E5%25B7%259E%25E6%25A1%25A5%3Fzn%3D%25E8%258B%258F%25E5%25B7%259E%25E6%25A1%25A5%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E8%8B%8F%E5%B7%9E%E6%A1%A5%22%2C%22total%22%3A%220%22%7D"]; ershoufang_cookiekey=["%7B%22url%22%3A%22%2Fzufang%2F_%25E9%2595%25BF%25E6%2598%25A5%25E6%25A1%25A5%3Fzn%3D%25E9%2595%25BF%25E6%2598%25A5%25E6%25A1%25A5%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E9%95%BF%E6%98%A5%E6%A1%A5%22%2C%22total%22%3A%220%22%7D","%7B%22url%22%3A%22%2Fershoufang%2F_%25E8%258B%258F%25E5%25B7%259E%25E6%25A1%25A5%3Fzn%3D%25E8%258B%258F%25E5%25B7%259E%25E6%25A1%25A5%22%2C%22x%22%3A%220%22%2C%22y%22%3A%220%22%2C%22name%22%3A%22%E8%8B%8F%E5%B7%9E%E6%A1%A5%22%2C%22total%22%3A%220%22%7D"]; zufang_BROWSES=501465046,501446051,90241951,90178388,90056278,90187979,501390110,90164392,90168076,501472221,501434480,501480593,501438374,501456072,90194547,90223523,501476326,90245144; historyCity=["\u5317\u4eac"]; _gid=GA1.2.23153704.1621410645; Hm_lvt_94ed3d23572054a86ed341d64b267ec6=1620784715,1621410646; _Jo0OQK=4958FA78A5CC420C425C480565EB46670E81832D8173C5B3CFE61303A51DE43E320422D6C7A15892C5B8B66971ED1B97A7334F0B591B193EBECAAB0E446D805316B26107A0B847CA53375B268E06EC955BB75B268E06EC955BB9D992FB153179892GJ1Z1OA==; ershoufang_BROWSES=501129552; domain=bj; 8fcfcf2bd7c58141_gr_session_id=61676ce2-ea23-4f77-8165-12edcc9ed902; 8fcfcf2bd7c58141_gr_session_id_61676ce2-ea23-4f77-8165-12edcc9ed902=true; yfx_f_l_v_t_10000001=f_t_1620784714003__r_t_1621471673953__v_t_1621474304616__r_c_2; Hm_lpvt_94ed3d23572054a86ed341d64b267ec6=1621475617'
headers = {
   'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.72 Safari/537.36',
   'Cookie': cookie.encode("utf-8").decode("latin1")
}
def get_page(url):
   """获取网页原始数据"""
   global headers
   html = requests.get(url, headers=headers).text
   return html
def extract_info(html):
   """解析网页数据,抽取出房源相关信息"""
   host = 'https://bj.5i5j.com'
   soup = BeautifulSoup(html, 'lxml')
   data = []
   for li in soup.find('div', class_='list-con-box').find('ul', class_='pList').find_all('li'):
       try:
           title = li.find('h3', class_='listTit').get_text()  # 名称
           url = host + li.find('h3', class_='listTit').a['href']  # 链接
           info_li = li.find('div', class_='listX')  # 每个房源核心信息都在这里
           p1 = info_li.find_all('p')[0].get_text()  # 获取第一段
           info1 = [i.strip() for i in p1.split('  ·  ')]
           # 户型、面积、朝向、楼层、装修、建成时间
           house_type, area, direction, floor, decoration, build_year = info1
           p2 = info_li.find_all('p')[1].get_text()  # 获取第二段
           info2 = [i.replace(' ', '') for i in p2.split('·')]
           # 小区、位于几环、交通信息
           if len(info2) == 2:
               residence, ring = info2
               transport = ''  # 部分房源无交通信息
           elif len(info2) == 3:
               residence, ring, transport = info2
           else:
               residence, ring, transport = ['', '', '']
           p3 = info_li.find_all('p')[2].get_text()  # 获取第三段
           info3 = [i.replace(' ', '') for i in p3.split('·')]
           # 关注人数、带看次数、发布时间
           try:
               watch, arrive, release_year = info3
           except Exception as e:
               print(info2, '获取带看、发布日期信息出错')
               watch, arrive, release_year = ['', '', '']
           total_price = li.find('p', class_='redC').get_text().strip()  # 房源总价
           univalence = li.find('div', class_='jia').find_all('p')[1].get_text().replace('单价', '')  # 房源单价
           else_info = li.find('div', class_='listTag').get_text()
           data.append([title, url, house_type, area, direction, floor, decoration, residence, ring,
                        transport, total_price, univalence, build_year, release_year, watch, arrive, else_info])
       except Exception as e:
           print('extract_info: ', e)
   return data
def crawl():
   esf_url = 'https://bj.5i5j.com/ershoufang/'  # 主页网址
   fields = ['城区', '名称', '链接', '户型', '面积', '朝向', '楼层', '装修', '小区', '环', '交通情况', '总价', '单价',
             '建成时间', '发布时间', '关注', '带看', '其他信息']
   f = open(folder_path + 'data' + os.sep + '北京二手房-我爱我家.csv', 'w', newline='', encoding='gb18030')
   writer = csv.writer(f, delimiter=',')  # 以逗号分割
   writer.writerow(fields)
   page = 1
   regex = re.compile(r'.*?href="(.+)" rel="external nofollow"  rel="external nofollow" .*?')
   while True:
       url = esf_url + 'n%s/' % page  # 构造页面链接
       if page == 1:
           url = esf_url
       html = get_page(url)
       # 部分页面链接无法获取数据,需进行判断,并从返回html内容中获取正确链接,重新获取html
       if '<HTML><HEAD><script>window.location.href=' in html:
           url = regex.search(html).group(1)
           html = requests.get(url, headers=headers).text
       print(url)
       data = extract_info(html)
       if data:
           writer.writerows(data)
       page += 1
   f.close()
if __name__ == '__main__':
   crawl()  # 启动爬虫

四、数据展示

截至2021年5月23日,共获取数据62943条,基本上将我爱我家官网上北京地区的二手房数据全部抓取下来了。

Python爬虫之爬取我爱我家二手房数据 

来源:https://blog.csdn.net/qq_23926575/article/details/117217597

标签:Python,爬取,二手房,数据
0
投稿

猜你喜欢

  • python 指定源路径来解决import问题的操作

    2023-04-28 00:03:01
  • 手把手教你搭建python+selenium自动化环境(图文)

    2023-03-01 17:45:03
  • linux环境搭建图数据库neo4j的讲解

    2024-01-16 22:55:31
  • Go语言编程中字符串切割方法小结

    2023-06-16 01:41:24
  • 实例讲解Python中SocketServer模块处理网络请求的用法

    2021-04-16 13:25:27
  • 用python统计代码行的示例(包括空行和注释)

    2022-06-28 02:15:30
  • Vue状态管理库Pinia详细介绍

    2024-05-09 15:11:43
  • VsCode中ctrl+s后会在当前目录下自动生成dist目录的方法

    2023-04-25 09:19:41
  • Django框架会话技术实例分析【Cookie与Session】

    2021-06-24 03:41:53
  • MySQL中的用户创建与权限管理

    2024-01-17 00:49:06
  • 科讯CMS编辑器会自动更改代码

    2008-12-12 13:00:00
  • JavaScript中prototype为对象添加属性的误区介绍

    2024-04-19 09:46:30
  • Python Pillow Image.save 保存为jpg图片压缩问题

    2023-07-05 11:13:49
  • MySQL中datetime时间字段的四舍五入操作

    2024-01-28 08:00:40
  • python分布式计算dispy的使用详解

    2021-01-14 09:15:24
  • python定义变量类型

    2022-01-28 02:13:52
  • python3中dict.keys().sort()用不了的解决方法

    2023-08-16 11:33:54
  • python输出100以内的质数与合数实例代码

    2021-01-30 20:47:52
  • SQL注入攻击成为新威胁将挑战操作系统安全

    2009-03-16 15:13:00
  • python神经网络TensorFlow简介常用基本操作教程

    2024-01-02 17:44:45
  • asp之家 网络编程 m.aspxhome.com