Python实现的NN神经网络算法完整示例

作者:Wsine 时间:2023-10-06 04:30:41 

本文实例讲述了Python实现的NN神经网络算法。分享给大家供大家参考,具体如下:

参考自Github开源代码:https://github.com/dennybritz/nn-from-scratch

运行环境

  • Pyhton3

  • numpy(科学计算包)

  • matplotlib(画图所需,不画图可不必)

  • sklearn(人工智能包,生成数据使用)

计算过程

Python实现的NN神经网络算法完整示例

输入样例

none

代码实现


# -*- coding:utf-8 -*-
#!python3
__author__ = 'Wsine'
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
import matplotlib.pyplot as plt
import matplotlib
import operator
import time
def createData(dim=200, cnoise=0.20):
 """
 输出:数据集, 对应的类别标签
 描述:生成一个数据集和对应的类别标签
 """
 np.random.seed(0)
 X, y = sklearn.datasets.make_moons(dim, noise=cnoise)
 plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral)
 #plt.show()
 return X, y
def plot_decision_boundary(pred_func, X, y):
 """
 输入:边界函数, 数据集, 类别标签
 描述:绘制决策边界(画图用)
 """
 # 设置最小最大值, 加上一点外边界
 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
 h = 0.01
 # 根据最小最大值和一个网格距离生成整个网格
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
 # 对整个网格预测边界值
 Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
 Z = Z.reshape(xx.shape)
 # 绘制边界和数据集的点
 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
def calculate_loss(model, X, y):
 """
 输入:训练模型, 数据集, 类别标签
 输出:误判的概率
 描述:计算整个模型的性能
 """
 W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
 # 正向传播来计算预测的分类值
 z1 = X.dot(W1) + b1
 a1 = np.tanh(z1)
 z2 = a1.dot(W2) + b2
 exp_scores = np.exp(z2)
 probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
 # 计算误判概率
 corect_logprobs = -np.log(probs[range(num_examples), y])
 data_loss = np.sum(corect_logprobs)
 # 加入正则项修正错误(可选)
 data_loss += reg_lambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2)))
 return 1./num_examples * data_loss
def predict(model, x):
 """
 输入:训练模型, 预测向量
 输出:判决类别
 描述:预测类别属于(0 or 1)
 """
 W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
 # 正向传播计算
 z1 = x.dot(W1) + b1
 a1 = np.tanh(z1)
 z2 = a1.dot(W2) + b2
 exp_scores = np.exp(z2)
 probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
 return np.argmax(probs, axis=1)
def initParameter(X):
 """
 输入:数据集
 描述:初始化神经网络算法的参数
    必须初始化为全局函数!
    这里需要手动设置!
 """
 global num_examples
 num_examples = len(X) # 训练集的大小
 global nn_input_dim
 nn_input_dim = 2 # 输入层维数
 global nn_output_dim
 nn_output_dim = 2 # 输出层维数
 # 梯度下降参数
 global epsilon
 epsilon = 0.01 # 梯度下降学习步长
 global reg_lambda
 reg_lambda = 0.01 # 修正的指数
def build_model(X, y, nn_hdim, num_passes=20000, print_loss=False):
 """
 输入:数据集, 类别标签, 隐藏层层数, 迭代次数, 是否输出误判率
 输出:神经网络模型
 描述:生成一个指定层数的神经网络模型
 """
 # 根据维度随机初始化参数
 np.random.seed(0)
 W1 = np.random.randn(nn_input_dim, nn_hdim) / np.sqrt(nn_input_dim)
 b1 = np.zeros((1, nn_hdim))
 W2 = np.random.randn(nn_hdim, nn_output_dim) / np.sqrt(nn_hdim)
 b2 = np.zeros((1, nn_output_dim))
 model = {}
 # 梯度下降
 for i in range(0, num_passes):
   # 正向传播
   z1 = X.dot(W1) + b1
   a1 = np.tanh(z1) # 激活函数使用tanh = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
   z2 = a1.dot(W2) + b2
   exp_scores = np.exp(z2) # 原始归一化
   probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
   # 后向传播
   delta3 = probs
   delta3[range(num_examples), y] -= 1
   dW2 = (a1.T).dot(delta3)
   db2 = np.sum(delta3, axis=0, keepdims=True)
   delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2))
   dW1 = np.dot(X.T, delta2)
   db1 = np.sum(delta2, axis=0)
   # 加入修正项
   dW2 += reg_lambda * W2
   dW1 += reg_lambda * W1
   # 更新梯度下降参数
   W1 += -epsilon * dW1
   b1 += -epsilon * db1
   W2 += -epsilon * dW2
   b2 += -epsilon * db2
   # 更新模型
   model = { 'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}
   # 一定迭代次数后输出当前误判率
   if print_loss and i % 1000 == 0:
     print("Loss after iteration %i: %f" % (i, calculate_loss(model, X, y)))
 plot_decision_boundary(lambda x: predict(model, x), X, y)
 plt.title("Decision Boundary for hidden layer size %d" % nn_hdim)
 #plt.show()
 return model
def main():
 dataSet, labels = createData(200, 0.20)
 initParameter(dataSet)
 nnModel = build_model(dataSet, labels, 3, print_loss=False)
 print("Loss is %f" % calculate_loss(nnModel, dataSet, labels))
if __name__ == '__main__':
 start = time.clock()
 main()
 end = time.clock()
 print('finish all in %s' % str(end - start))
 plt.show()

输出样例

Loss is 0.071316
finish all in 7.221354361552228

Python实现的NN神经网络算法完整示例

希望本文所述对大家Python程序设计有所帮助。

来源:http://www.cnblogs.com/wsine/p/5180365.html

标签:Python,NN,神经网络算法
0
投稿

猜你喜欢

  • 如何列举Error的所有对象?

    2010-01-12 20:01:00
  • 原创一个AJAX类

    2008-07-24 13:29:00
  • [翻译]标记语言和样式手册 Chapter 11 打印样式

    2008-02-11 18:44:00
  • 一文详解go mod依赖管理详情

    2023-07-13 04:35:06
  • 面向对象的XHTML与CSS编程

    2008-01-11 13:37:00
  • 去除新云CMS文章列表前的小圆点

    2008-09-27 13:36:00
  • Go语言sync.Cond基本使用及原理示例详解

    2023-06-28 07:09:01
  • MySQL数据库本地备份和双机相互备份

    2008-05-27 12:25:00
  • 减少新开窗口提升可访问性

    2009-04-17 13:56:00
  • MySQL中delimiter的作用

    2010-10-25 20:26:00
  • 使用 Osql 工具管理 SQL Server 桌面引擎 (MSDE 2000)应用介绍

    2020-07-01 22:12:59
  • 关于《回访确认》的几个问题

    2009-08-24 12:43:00
  • AJAX实例:根据邮编自动完成地址信息

    2008-03-06 19:44:00
  • 解读iPhone平台的一些优秀设计思路

    2010-06-24 21:53:00
  • © 版权符号显示不清楚解决方法

    2008-02-18 14:46:00
  • 使用HTML5中的canvas进行图形图像.游戏.动画开发时,不需要双缓冲机制

    2010-04-01 12:21:00
  • asp代码WinHttp.WinHttpRequest.5.1使用例子

    2010-03-11 21:28:00
  • 解决在Dreamweaver中不支持中文文件名的方法

    2010-09-02 12:35:00
  • 从事设计行业的十年

    2008-04-01 09:44:00
  • MySQL UPDATE delete 语句的速度

    2008-03-12 12:22:00
  • asp之家 网络编程 m.aspxhome.com