pandas DataFrame创建方法的方式

作者:蒙面的普罗米修斯 时间:2023-03-02 11:47:52 

在pandas里,DataFrame是最经常用的数据结构,这里总结生成和添加数据的方法:

①、把其他格式的数据整理到DataFrame中;
②在已有的DataFrame中插入N列或者N行。

1. 字典类型读取到DataFrame(dict to DataFrame)

假如我们在做实验的时候得到的数据是dict类型,为了方便之后的数据统计和计算,我们想把它转换为DataFrame,存在很多写法,这里简单介绍常用的几种:

方法一:直接使用pd.DataFrame(data=test_dict)即可,括号中的data=写不写都可以,具体如下:


test_dict = {'id':[1,2,3,4,5,6],'name':['Alice','Bob','Cindy','Eric','Helen','Grace '],'math':[90,89,99,78,97,93],'english':[89,94,80,94,94,90]}
#[1].直接写入参数test_dict
test_dict_df = pd.DataFrame(test_dict)
#[2].字典型赋值
test_dict_df = pd.DataFrame(data=test_dict)

那么,我们就得到了一个DataFrame,如下:

pandas DataFrame创建方法的方式

应该就是这个样子了。

方法二:使用from_dict方法:


test_dict_df = pd.DataFrame.from_dict(test_dict)

结果是一样的,不再重复贴图。

其他方法:如果你的dict变量很小,例如{'id':1,'name':'Alice'},你想直接写到括号里:


test_dict_df = pd.DataFrame({'id':1,'name':'Alice'}) # wrong style

这样是不行的,会报错ValueError: If using all scalar values, you must pass an index,是因为如果你提供的是一个标量,必须还得提供一个索引Index,所以你可以这么写:


test_dict_df = pd.DataFrame({'id':1,'name':'Alice'},pd.Index(range(1)))

后面的可以写多个pd.Index(range(3),就会生成三行一样的,是因为前面的dict型变量只有一组值,如果有多个,后面的Index必须跟前面的数据组数一致,否则会报错:


pd.DataFrame({'id':[1,2],'name':['Alice','Bob']},pd.Index(range(2))) #must be 2 in range function.

关于选择列,有些时候我们只需要选择dict中部分的键当做DataFrame的列,那么我们可以使用columns参数,例如我们只选择'id','name'列:


test_dict_df = pd.DataFrame(data=test_dict,columns=['id','name']) #only choose 'id' and 'name' columns

这里就不在多写了,后续变更颜色添加内容。

2. csv文件构建DataFrame(csv to DataFrame)

我们实验的时候数据一般比较大,而csv文件是文本格式的数据,占用更少的存储,所以一般数据来源是csv文件,从csv文件中如何构建DataFrame呢? txt文件一般也能用这种方法。

方法一:最常用的应该就是pd.read_csv('filename.csv')了,用 sep指定数据的分割方式,默认的是','


df = pd.read_csv('./xxx.csv')

如果csv中没有表头,就要加入head参数

3. 在已有的DataFrame中,增加N列或者N行

加入我们已经有了一个DataFrame,如下图:

pandas DataFrame创建方法的方式

3.1 添加列

此时我们又有一门新的课physics,我们需要为每个人添加这门课的分数,按照Index的顺序,我们可以使用insert方法,如下:


new_columns = [92,94,89,77,87,91]
test_dict_df.insert(2,'pyhsics',new_columns)
#test_dict_df.insert(2,'pyhsics',new_columns,allow_duplicates=True)

此时,就得到了添加好的DataFrame,需要注意的是DataFrame默认不允许添加重复的列,但是在insert函数中有参数allow_duplicates=True,设置为True后,就可以添加重复的列了,列名也是重复的:

pandas DataFrame创建方法的方式

3.2 添加行

此时我们又来了一位新的同学Iric,需要在DataFrame中添加这个同学的信息,我们可以使用loc方法:


new_line = [7,'Iric',99]
test_dict_df.loc[6]= new_line

但是十分注意的是,这样实际是改的操作,如果loc[index]中的index已经存在,则新的值会覆盖之前的值。

当然也可以把这些新的数据构建为一个新的DataFrame,然后两个DataFrame拼起来。可以用append方法,不过不太会用,提供一种方法:


test_dict_df.append(pd.DataFrame([new_line],columns=['id','name','physics']))

本想一口气把CURD全写完,没想到写到这里就好累。。。其他后续新开篇章在写吧。

相关代码:(https://github.com/dataSnail/blogCode/blob/master/python_curd/python_curd_create.ipynb)(在DataFrame中删除N列或者N行)(在DataFrame中查询某N列或者某N行)(在DataFrame中修改数据)

来源:https://www.cnblogs.com/datasnail/p/9675410.html

标签:pandas,DataFrame,创建方法
0
投稿

猜你喜欢

  • python自动生成证件号的方法示例

    2023-05-25 07:42:11
  • python中os包的用法

    2021-07-11 07:24:02
  • HTML和SEO基础知识:H标签全透视

    2010-09-21 16:45:00
  • 关于jupyter打开之后不能直接跳转到浏览器的解决方式

    2023-07-17 01:39:55
  • sql server创建复合主键的2种方法

    2024-01-26 11:10:38
  • django在开发中取消外键约束的实现

    2021-10-12 05:47:57
  • 微信小程序:报错(in promise) MiniProgramError

    2024-05-09 10:35:18
  • 详解Python为什么不用设计模式

    2022-03-30 16:17:12
  • Python脚本实现网卡流量监控

    2022-11-27 11:36:51
  • python中使用矢量化替换循环详解

    2023-08-27 00:51:01
  • Python3中条件控制、循环与函数的简易教程

    2021-06-09 18:22:54
  • TensorFlow梯度求解tf.gradients实例

    2023-08-16 17:26:03
  • JavaScript中用getDate()方法返回指定日期的教程

    2024-05-09 09:05:46
  • 利用Python实现命令行版的火车票查看器

    2021-10-24 13:59:21
  • 使用wxPython获取系统剪贴板中的数据的教程

    2023-11-05 18:43:41
  • python之dlib包安装失败问题及解决

    2022-11-20 09:33:55
  • python复制文件到指定目录的实例

    2021-03-17 17:10:26
  • PHP判断是否微信访问的方法示例

    2023-07-05 03:21:36
  • SQL Server模糊查询的常见方法总结

    2024-01-21 19:15:49
  • python中通过pip安装库文件时出现“EnvironmentError: [WinError 5] 拒绝访问”的问题及解决方案

    2023-08-29 20:25:40
  • asp之家 网络编程 m.aspxhome.com