tensorflow 1.X迁移至tensorflow2 的代码写法

作者:浪漫的数据分析 时间:2023-07-19 08:30:54 

目标:代码改写成tf2格式

把tensorflow 1.X中的代码,迁移到tensorflow2中。一些常见的改写经验。包括sess,tf.placeholder, tf.InteractiveSession(),tf.Session()
tensorflow2相比于tensorflow 1.x版本有较大的变化,且网上现在好多文章的代码都是基于tf1.x版本的,学会简单的转换,帮助我们看代码。
整体来说,tensorflow2更加简洁了。
本文将持续更新中。

当然用tf.compat.v1也能解决部分问题。但是不推荐,毕竟tf2才是未来。

tf1和tf2区别:

1、tf1基于图模式,tf2基于eager模式,tf2对程序员更友好,更像是函数,更方便调试。

2、tf2更向keras靠拢,对分布式训练的支持更好。

改写内容:

tf.placeholder

tensorflow 1.x版本中的placeholder,在tf2中已经被取消,在tf2中,可以用tf.keras.Inputs代替。
示例:
tf1中


input_ids = tf.placeholder(dtype=tf.int32, shape=[None])

tf2中,改写为:


input_ids = tf.keras.Input(dtype=tf.int32, shape=[None])

tf.Sess,sess.run

  • tensorflow 1.x由于是基于静态图机制(Graph Execution),需要先构造图,然后才真正运行,因此需要用显示调用Session后,才会真正触发计算。对调试代码非常不利。

  • tensorflow 2.x默认是基于动态图机制(Eager Execution),就像常规函数一样,调用时就触发计算。对调试代码非常方便。

所以,tf1中session部分代码,可以全部去掉。

示例:

tf1中


sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

tf2中,改写为:直接不要

具体例子1:

tf1的代码:


import tensorflow as tf
import numpy as np

# 定义一个未知变量input_ids用于存储索引
input_ids = tf.placeholder(dtype=tf.int32, shape=[None])

# 定义一个已知变量embedding,是一个5*3的矩阵
embedding = a = np.asarray([[0.1, 0.2, 0.3], [1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3], [4.1, 4.2, 4.3]])

# 根据input_ids中的id,查找embedding中对应的元素
input_embedding = tf.nn.embedding_lookup(embedding, input_ids)

sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
# print(embedding.eval())
print(sess.run(input_embedding, feed_dict={input_ids: [1, 2, 3, 0, 3, 2, 1]}))

改写tf2代码:


import tensorflow as tf
import numpy as np

# 定义一个未知变量input_ids用于存储索引
input_ids = tf.keras.Input(dtype=tf.int32, shape=[None])

# 定义一个已知变量embedding,是一个5*3的矩阵
embedding = a = np.asarray([[0.1, 0.2, 0.3], [1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3], [4.1, 4.2, 4.3]])

input_ids = np.array([1, 2, 3, 0, 3, 2, 1])
# 根据input_ids中的id,查找embedding中对应的元素
input_embedding = tf.nn.embedding_lookup(embedding, input_ids)
print(input_embedding)

可见,tf2代码简洁明了不少,多动手试试,就能体会。

结论:

深刻体会tf2带来的变革。
1、体会静态图和动态图的差别
2、体会对分布式训练的优化(未来写)
3、体会模型训练的便利性(直接用compile等,keras的便利性。)

来源:https://blog.csdn.net/weixin_43290383/article/details/121896799

标签:tensorflow,迁移
0
投稿

猜你喜欢

  • Vue.js实现一个自定义分页组件vue-paginaiton

    2024-05-02 16:36:36
  • MySQL 集群配置

    2009-04-20 14:15:00
  • 常用SQL语句优化技巧总结【经典】

    2024-01-20 19:27:03
  • window.open被浏览器拦截后的自定义提示

    2007-11-23 12:31:00
  • Vue+Element+Springboot图片上传的实现示例

    2024-06-07 15:19:39
  • 网站登录持久化Cookie方案

    2023-07-01 01:44:17
  • JavaScript编写棋盘覆盖代码详解

    2024-04-17 10:30:05
  • SQL中自己创建函数 分割字符串

    2008-11-20 16:13:00
  • 高质量Python代码编写的5个优化技巧

    2022-04-20 16:49:16
  • Perl与JS的对比分析(数组、哈希)

    2022-08-31 05:45:20
  • 支持png透明图片的php生成缩略图类分享

    2023-11-18 07:26:13
  • Oracle与MySQL删除字段时对索引和约束的处理

    2008-12-26 16:41:00
  • 15分钟学会vue项目改造成SSR(小白教程)

    2024-04-27 16:07:07
  • python enumerate内置函数用法总结

    2023-06-24 05:54:24
  • IA学习笔记04:标签系统

    2009-09-22 14:40:00
  • js不是基础的基础

    2024-05-03 15:57:54
  • Python实现国外赌场热门游戏Craps(双骰子)

    2023-12-13 23:22:21
  • SQL集合函数中case when then 使用技巧

    2011-09-30 11:54:59
  • Python PyQt5 Pycharm 环境搭建及配置详解(图文教程)

    2023-06-23 12:44:34
  • 如何基于Python实现自动扫雷

    2023-12-13 15:51:08
  • asp之家 网络编程 m.aspxhome.com