Python实现图像去噪方式(中值去噪和均值去噪)

作者:初见与告别 时间:2023-04-15 15:38:13 

实现对图像进行简单的高斯去噪和椒盐去噪。

代码如下:


import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import random
import scipy.misc
import scipy.signal
import scipy.ndimage
from matplotlib.font_manager import FontProperties
font_set = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=10)

def medium_filter(im, x, y, step):
 sum_s = []
 for k in range(-int(step / 2), int(step / 2) + 1):
   for m in range(-int(step / 2), int(step / 2) + 1):
     sum_s.append(im[x + k][y + m])
 sum_s.sort()
 return sum_s[(int(step * step / 2) + 1)]

def mean_filter(im, x, y, step):
 sum_s = 0
 for k in range(-int(step / 2), int(step / 2) + 1):
   for m in range(-int(step / 2), int(step / 2) + 1):
     sum_s += im[x + k][y + m] / (step * step)
 return sum_s

def convert_2d(r):
 n = 3
 # 3*3 滤波器, 每个系数都是 1/9
 window = np.ones((n, n)) / n ** 2
 # 使用滤波器卷积图像
 # mode = same 表示输出尺寸等于输入尺寸
 # boundary 表示采用对称边界条件处理图像边缘
 s = scipy.signal.convolve2d(r, window, mode='same', boundary='symm')
 return s.astype(np.uint8)

def convert_3d(r):
 s_dsplit = []
 for d in range(r.shape[2]):
   rr = r[:, :, d]
   ss = convert_2d(rr)
   s_dsplit.append(ss)
 s = np.dstack(s_dsplit)
 return s

def add_salt_noise(img):
 rows, cols, dims = img.shape
 R = np.mat(img[:, :, 0])
 G = np.mat(img[:, :, 1])
 B = np.mat(img[:, :, 2])

Grey_sp = R * 0.299 + G * 0.587 + B * 0.114
 Grey_gs = R * 0.299 + G * 0.587 + B * 0.114

snr = 0.9

noise_num = int((1 - snr) * rows * cols)

for i in range(noise_num):
   rand_x = random.randint(0, rows - 1)
   rand_y = random.randint(0, cols - 1)
   if random.randint(0, 1) == 0:
     Grey_sp[rand_x, rand_y] = 0
   else:
     Grey_sp[rand_x, rand_y] = 255
 #给图像加入高斯噪声
 Grey_gs = Grey_gs + np.random.normal(0, 48, Grey_gs.shape)
 Grey_gs = Grey_gs - np.full(Grey_gs.shape, np.min(Grey_gs))
 Grey_gs = Grey_gs * 255 / np.max(Grey_gs)
 Grey_gs = Grey_gs.astype(np.uint8)

# 中值滤波
 Grey_sp_mf = scipy.ndimage.median_filter(Grey_sp, (7, 7))
 Grey_gs_mf = scipy.ndimage.median_filter(Grey_gs, (8, 8))

# 均值滤波
 Grey_sp_me = convert_2d(Grey_sp)
 Grey_gs_me = convert_2d(Grey_gs)

plt.subplot(321)
 plt.title('加入椒盐噪声',fontproperties=font_set)
 plt.imshow(Grey_sp, cmap='gray')
 plt.subplot(322)
 plt.title('加入高斯噪声',fontproperties=font_set)
 plt.imshow(Grey_gs, cmap='gray')

plt.subplot(323)
 plt.title('中值滤波去椒盐噪声(8*8)',fontproperties=font_set)
 plt.imshow(Grey_sp_mf, cmap='gray')
 plt.subplot(324)
 plt.title('中值滤波去高斯噪声(8*8)',fontproperties=font_set)
 plt.imshow(Grey_gs_mf, cmap='gray')

plt.subplot(325)
 plt.title('均值滤波去椒盐噪声',fontproperties=font_set)
 plt.imshow(Grey_sp_me, cmap='gray')
 plt.subplot(326)
 plt.title('均值滤波去高斯噪声',fontproperties=font_set)
 plt.imshow(Grey_gs_me, cmap='gray')
 plt.show()

def main():
 img = np.array(Image.open('E:/pycharm/GraduationDesign/Test/testthree.png'))
 add_salt_noise(img)

if __name__ == '__main__':
 main()

效果如下

Python实现图像去噪方式(中值去噪和均值去噪)

来源:https://blog.csdn.net/m0_37108612/article/details/90638237

标签:Python,中值去噪,均值去噪
0
投稿

猜你喜欢

  • 分组字符合并SQL语句 按某字段合并字符串之一(简单合并)

    2024-01-24 11:30:20
  • 让复杂导航设计变得简单

    2008-01-07 11:50:00
  • 怎样在JavaScript里写一个swing把数据插入数据库

    2024-01-20 09:26:42
  • MySQL Shell的介绍以及安装

    2024-01-28 20:03:18
  • python中的% 是什么意思,起到什么作用呢

    2021-12-12 00:20:58
  • python中的内置函数max()和min()及mas()函数的高级用法

    2023-01-21 18:45:43
  • Git Submodule管理项目子模块的使用

    2023-10-06 20:34:57
  • Python 用__new__方法实现单例的操作

    2023-05-22 08:22:41
  • python中reload(module)的用法示例详解

    2021-01-31 10:49:11
  • vue 图片裁剪上传组件的实现

    2024-05-09 15:14:02
  • python3解析库BeautifulSoup4的安装配置与基本用法

    2022-02-06 14:08:04
  • SQL Server 2008中的新日期数据类型

    2009-03-16 15:05:00
  • python之 matplotlib和pandas绘图教程

    2021-07-16 01:50:11
  • snoopy PHP版的网络客户端提供本地下载

    2023-06-28 00:09:55
  • MySQL备份与恢复之冷备(1)

    2024-01-26 13:37:50
  • Go语言net包RPC远程调用三种方式http与json-rpc及tcp

    2024-05-29 22:06:14
  • javascript实现自动输出文本(打字特效)

    2024-02-25 18:25:14
  • python操作xml文件示例

    2022-06-17 22:38:28
  • 浅谈Python 参数与变量

    2023-05-19 12:27:25
  • Python科学计算包numpy用法实例详解

    2021-11-12 15:07:20
  • asp之家 网络编程 m.aspxhome.com