python实现kNN算法

作者:S大幕 时间:2023-01-24 13:58:06 

kNN(k-nearest neighbor)是一种基本的分类与回归的算法。这里我们先只讨论分类中的kNN算法。

k邻近算法的输入为实例的特征向量,对对应于特征空间中的点;输出为实例的类别,可以取多类,k近邻法是建设给定一个训练数据集,其中的实例类别已定,分类时,对于新的实例,根据其k个最邻近的训练实例的类别,通过多数表决等方式进行预测。所以可以说,k近邻法不具有显示的学习过程。k临近算法实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”

k值的选择,距离的度量和分类决策规则是k近邻算法的三个基本要素。

这里需要说明的是,对于距离的度量,我们有很多种度量方法可以选择,如欧氏距离(2-范数),曼哈顿距离(1-范数),无穷范数等,根据不同的实例,我们可以选择不同的距离度量方法。

下面给出了利用python和sklearn库实现的kNN算法的过程及部分注释:


# coding=utf-8

# 首先利用sklearn的库进行knn算法的建立与预测
# from sklearn import neighbors
# from sklearn import datasets
#
# knn = neighbors.KNeighborsClassifier()   # 调用分类器赋在变量knn上
#
# iris = datasets.load_iris()   # 返回一个数据库,赋值在iris上
#
# print iris   # 显示这个数据集
#
# knn.fit(iris.data, iris.target) # fit的第一个参数 是特征值矩阵,第二个参数是一维的向量
#
# predictedLabel = knn.predict([[0.1,0.2,0.3,0.4]])
#
# print predictedLabel

# 下面自己写一个程序实现knn算法

import csv
import random
import math
import operator

# filename是指文件名,split是某一个数字,数字前的数据当做训练集,数字后的数据当做测试集
# trainingSet是训练集,testSet是测试集
# 函数作用,加载文件,并将文件通过随机数的方法分为训练集和测试集
def loadDataset(filename, split, trainingSet=[], testSet=[]):
 with open(filename, 'rb') as csvfile:  # 导入文件为csvfile格式
   lines = csv.reader(csvfile)   # 读取所有的行 reader函数的作用
   dataset = list(lines)    # 将所有的行转换为list的数据节后
   for x in range(len(dataset)-1):   # x在总共的行数中遍历
     for y in range(4):
       dataset[x][y] = float(dataset[x][y])
     if random.random() < split:
       trainingSet.append(dataset[x])
     else:
       testSet.append(dataset[x])

# 函数作用:计算欧氏距离
# 函数的输入是两个实例和他们的维度
def euclideanDistance(instance1, instance2, length):
 distance = 0
 for x in range(length):   # 对于每一个维度内进行一个差的计算,计算出所有维度的平方和
   distance += pow((instance1[x] - instance2[x]),2)
 return math.sqrt(distance)

# 函数作用:返回最近的k的neightbor
# 也就是返回在trainingSet中距离testInstance最近的k个邻居
def getNeigthbors(trainingSet, testInstance, k):
 distances =[] # 距离的容器,用来存放所有的距离值
 length = len(testInstance) - 1 # 用来存放testInstance的维度
 for x in range(len(trainingSet)):
   # 对于每一个x 计算训练集中的数据与实例的距离
   dist = euclideanDistance(testInstance,trainingSet[x],length)
   distances.append((trainingSet[x],dist))
 # 把这些距离从小到大排起来
 distances.sort(key=operator.itemgetter(1))
 neighbors = []
 for x in range(k):
   neighbors.append(distances[x][0])
 return neighbors    # 返回最近的邻居

def getResponse(neighbors):
 classVotes = {}
 for x in range(len(neighbors)):
   response = neighbors[x][-1]
   if response in classVotes:
     classVotes[response] += 1
   else:
     classVotes[response] = 1
 sortedVotes = sorted(classVotes.iteritems(),key=operator.itemgetter(1),reverse=True)
 return sortedVotes[0][0]

# 用来检验预测结果的正确率
def getAccuracy(testSet,predictions):
 correct = 0
 for x in range(len(testSet)):
   if testSet[x][-1] == predictions[x]:    # [-1]值的是最后一个值,也就是每行的最后的值,即为花的分类
     correct += 1
 return (correct/float(len(testSet))) * 100.00

def main():
 # prepare data
 trainingSet = []
 testSet = []
 split = 0.67
 loadDataset('irisdata.txt',split,trainingSet,testSet) # r的作用是防止错误字符串意思
 print 'Train Set' + repr(len(trainingSet))
 print 'Test Set' + repr(len(testSet))

# generate predicitions
 predicitions = []
 k = 3
 for x in range(len(testSet)):
   neighbors = getNeigthbors(trainingSet,testSet[x],k)
   result = getResponse(neighbors)
   predicitions.append(result)
   print('> predicition = ' + repr(result) + ', actual = ' +repr(testSet[x][-1]))
 accuracy = getAccuracy(testSet,predicitions)
 print('Accuracy:' + repr(accuracy) + '%')

main()

程序执行后,相应的输出如下:

python实现kNN算法

来源:http://blog.csdn.net/qq_34784753/article/details/61917999

标签:python,kNN
0
投稿

猜你喜欢

  • Go语言sort包函数使用示例

    2023-10-15 03:29:59
  • 详解python之简单主机批量管理工具

    2023-04-24 07:45:44
  • vue+axios+java实现文件上传功能

    2024-04-30 10:40:32
  • Django--权限Permissions的例子

    2021-02-16 01:44:51
  • Python同时处理多个异常的方法

    2021-12-24 11:20:56
  • pandas dataframe添加表格框线输出的方法

    2021-11-28 01:34:41
  • python多线程socket编程之多客户端接入

    2021-01-26 10:14:52
  • Python机器学习NLP自然语言处理基本操作词向量模型

    2022-01-16 10:33:42
  • YOLOv5部署到web端详细过程(flask+js简单易懂)

    2023-03-28 07:00:17
  • 支持生僻字且自动识别utf-8编码的php汉字转拼音类

    2023-11-14 21:04:40
  • Python实现提取音乐频谱的方法详解

    2022-01-27 07:03:08
  • Python中的各种装饰器详解

    2023-02-23 06:16:41
  • Python迭代器的实现原理

    2022-12-13 09:26:22
  • 详解Python自动化中这八大元素定位

    2023-06-04 18:25:34
  • ASP无组件汉字验证码

    2008-05-08 13:19:00
  • 几种设置表单元素中文本输入框不可编辑的方法总结

    2024-04-18 09:34:14
  • python实现搜索本地文件信息写入文件的方法

    2023-01-19 10:21:47
  • Python制作简易版小工具之计算天数的实现思路

    2023-10-29 08:12:07
  • 详解nvm管理多版本node踩坑

    2024-05-03 15:56:43
  • php版银联支付接口开发简明教程

    2023-11-24 00:27:41
  • asp之家 网络编程 m.aspxhome.com