python傅里叶变换FFT绘制频谱图
作者:蜘蛛侠不会飞 时间:2023-06-30 09:44:07
本文实例为大家分享了python傅里叶变换FFT绘制频谱图的具体代码,供大家参考,具体内容如下
频谱图的横轴表示的是 频率, 纵轴表示的是振幅
#coding=gbk
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#依据快速傅里叶算法得到信号的频域
def test_fft():
sampling_rate = 8000 #采样率
fft_size = 8000 #FFT长度
t = np.arange(0, 1.0, 1.0/sampling_rate)
x = np.sin(2*np.pi*156.25*t) + 2*np.sin(2*np.pi*234.375*t)+ 3*np.sin(2*np.pi*200*t)
xs = x[:fft_size]
xf = np.fft.rfft(xs) / fft_size #返回fft_size/2+1 个频率
freqs = np.linspace(0, sampling_rate/2, fft_size/2+1) #表示频率
xfp = np.abs(xf) * 2 #代表信号的幅值,即振幅
plt.figure(num='original', figsize=(15, 6))
plt.plot(x[:100])
plt.figure(figsize=(8,4))
plt.subplot(211)
plt.plot(t[:fft_size], xs)
plt.xlabel(u"时间(秒)", fontproperties='FangSong')
plt.title(u"156.25Hz和234.375Hz的波形和频谱", fontproperties='FangSong')
plt.subplot(212)
plt.plot(freqs, xfp)
plt.xlabel(u"频率(Hz)", fontproperties='FangSong')
plt.ylabel(u'幅值', fontproperties='FangSong')
plt.subplots_adjust(hspace=0.4)
plt.show()
test_fft()
# np.clip(a, a_min, a_max, out) 输出与a 的shape一样,大于等于a_min,小于等于a_max的数,即在 [a_min, a_max]之间的数
a = np.arange(10)
print(a)
print(a.shape)
# [0 1 2 3 4 5 6 7 8 9]
b = np.empty((10,))
np.clip(a, 3, 8, out=b)
print(b)
# [3. 3. 3. 3. 4. 5. 6. 7. 8. 8.]
c = np.clip(a, 4, 10)
print(c)
# [4 4 4 4 4 5 6 7 8 9]
#a_min, a_max也可以输入与a 相同shape的数组
d = np.arange(4)
d1 = np.clip(d, [-1, 1, -3, 2], 2)
print(d)
print(d1)
# [0 1 2 3] #原数组
# [0 1 2 2]
print(np.log10(1000))
def test_fft():
# FFT变换是针对一组数值进行运算的,这组数的长度N必须是2的整数次幂,例如64, 128, 256等等; 数值可以是实数也可以是复数,
# 通常我们的时域信号都是实数,因此下面都以实数为例。我们可以把这一组实数想像成对某个连续信号按照一定取样周期进行取样而得来,
# 如果对这组N个实数值进行FFT变换,将得到一个有N个复数的数组,我们称此复数数组为频域信号,此复数数组符合如下规律:
#
# 下标为0和N/2的两个复数的虚数部分为0,
# 下标为i和N-i的两个复数共轭,也就是其虚数部分数值相同、符号相反。
np.random.seed(66)
X = np.random.rand(8)
print(X)
# [0.15428758 0.13369956 0.36268547 0.67910888 0.19445006 0.25121038
# 0.75841639 0.55761859]
xf = np.fft.fft(X)
print(xf)
# [ 3.0914769 +0.j -0.20916178+0.39291702j -0.77236422+0.85181752j
# 0.12883683-0.39854483j -0.15179792+0.j 0.12883683+0.39854483j
# -0.77236422-0.85181752j -0.20916178-0.39291702j]
#通过快速傅里叶变换的逆变换 ifft 还原成原来的值
X1 = np.fft.ifft(xf)
print(X1)
# [0.15428758+0.00000000e+00j 0.13369956-2.00387919e-16j
# 0.36268547+1.66533454e-16j 0.67910888+1.51815661e-16j
# 0.19445006+0.00000000e+00j 0.25121038-1.51815661e-16j
# 0.75841639-1.66533454e-16j 0.55761859+2.00387919e-16j]
# 下面让我们来看看FFT变换之后的那些复数都代表什么意思。
#
# 首先下标为0的实数表示了时域信号中的直流成分的多少
# 下标为i的复数a+b*j表示时域信号中周期为N/i个取样值的正弦波和余弦波的成分的多少, 其中a表示cos波形的成分,b表示sin波形的成分
X = np.ones(8)
x2 = np.fft.fft(X) / len(X) # 为了计算各个成分的能量多少,需要将FFT的结果除以FFT的长度
print(x2)
# [1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
X = np.arange(0, 2*np.pi, 2*np.pi/8)
y = np.sin(X)
x3 = np.fft.fft(y) /len(y)
print(x3)
# [ 1.43029718e-18+0.00000000e+00j -4.44089210e-16-5.00000000e-01j # 只有下标为 1 的复数的虚部为-0.5,
# 1.53080850e-17-1.38777878e-17j 3.87727691e-17-1.11022302e-16j
# 2.91858728e-17+0.00000000e+00j 0.00000000e+00-1.11022302e-16j
# 1.53080850e-17+1.38777878e-17j 3.44084101e-16+5.00000000e-01j]
output1 = np.fft.fft(np.cos(X) / len(X))
print(output1)
# [-4.30636606e-17+0.00000000e+00j 5.00000000e-01-2.66538563e-16j #只有下标为1 的实部为 0.5
# 1.53080850e-17+0.00000000e+00j 5.55111512e-17+1.97149624e-16j
# 1.24474906e-17+0.00000000e+00j -1.11022302e-16+2.05306223e-16j
# 1.53080850e-17+0.00000000e+00j 5.00000000e-01-1.35917284e-16j]
#综合的例子
X = np.arange(0, 2*np.pi, 2*np.pi/128)
y = 0.3*np.cos(X) + 0.5*np.cos(2*X+np.pi/4) + 0.8*np.cos(3*X-np.pi/3)
yf = np.fft.fft(y) / len(y)
print(2*np.abs(yf[1]), np.rad2deg(np.angle(yf[1])))
# 0.30000000000000016 3.3130777931911615e-15 #计算出幅值和相位角
print(2*np.abs(yf[2]), np.rad2deg(np.angle(yf[2])))
# 0.5000000000000002 44.999999999999986
print(2*np.abs(yf[3]), np.rad2deg(np.angle(yf[3])))
# 0.7999999999999998 -60.00000000000007
# 周期为128/1.0点的余弦波的相位为0, 振幅为0.3
# 周期为64/2.0点的余弦波的相位为45度, 振幅为0.5
# 周期为128/3.0点的余弦波的相位为-60度,振幅为0.8
# test_fft()
#使用多个正玄波合成三角波
import pylab as pl
# 取FFT计算的结果freqs中的前n项进行合成,返回合成结果,计算loops个周期的波形
def fft_combine(freqs, n, loops=1):
length = len(freqs) * loops
data = np.zeros(length)
index = loops * np.arange(0, length, 1.0) / length * (2 * np.pi)
for k, p in enumerate(freqs[:n]):
if k != 0: p *= 2 # 除去直流成分之外,其余的系数都*2
data += np.real(p) * np.cos(k*index) # 余弦成分的系数为实数部
data -= np.imag(p) * np.sin(k*index) # 正弦成分的系数为负的虚数部
return index, data
# 产生size点取样的三角波,其周期为1
def triangle_wave(size):
x = np.arange(0, 1, 1.0/size)
y = np.where(x<0.5, x, 0)
y = np.where(x>=0.5, 1-x, y)
return x, y
def test_show():
fft_size = 256
# 计算三角波和其FFT
x, y = triangle_wave(fft_size)
fy = np.fft.fft(y) / fft_size
# 绘制三角波的FFT的前20项的振幅,由于不含下标为偶数的值均为0, 因此取
# log之后无穷小,无法绘图,用np.clip函数设置数组值的上下限,保证绘图正确
pl.figure()
pl.plot(np.clip(20*np.log10(np.abs(fy[:20])), -120, 120), "o")
pl.xlabel("frequency bin")
pl.ylabel("power(dB)")
pl.title("FFT result of triangle wave")
# 绘制原始的三角波和用正弦波逐级合成的结果,使用取样点为x轴坐标
pl.figure()
pl.plot(y, label="original triangle", linewidth=2)
for i in [0,1,3,5,7,9]:
index, data = fft_combine(fy, i+1, 2) # 计算两个周期的合成波形
pl.plot(data, label = "N=%s" % i)
pl.legend()
pl.title("partial Fourier series of triangle wave")
pl.show()
# test_show()
来源:https://blog.csdn.net/qq_40587575/article/details/83316980
标签:python,傅里叶变换,频谱图
0
投稿
猜你喜欢
Python模拟百度自动输入搜索功能的实例
2023-12-04 18:17:53
Mysql8.0递归查询的简单用法示例
2024-01-22 16:06:42
Linux 自动备份oracle数据库详解
2023-07-14 08:11:41
Python matplotlib模块及柱状图用法解析
2023-11-24 01:04:33
在oracle 数据库中查看一个sql语句的执行时间和SP2-0027错误
2009-10-09 13:04:00
浅析php中array_map和array_walk的使用对比
2023-09-10 22:22:28
Facebook基础的信息架构图
2008-04-01 09:46:00
在SQL Server数据库开发中的十大问题
2008-12-18 14:39:00
PHP中number_format()函数的用法讲解
2023-06-02 15:48:12
Python控制键盘鼠标pynput的详细用法
2021-08-01 07:52:14
pandas数据聚合与分组运算的实现
2021-09-18 18:29:12
在opera里css出现渲染问题
2009-01-15 12:19:00
python 实现一个图形界面的汇率计算器
2021-05-07 07:12:24
Python微信企业号开发之回调模式接收微信端客户端发送消息及被动返回消息示例
2023-09-20 13:29:27
彻底解决ewebeditor网站后台不能上传图片的方法
2023-07-09 04:09:01
很好用的PHP数据库类
2024-05-11 09:52:10
MYSQL建立外键失败几种情况记录Can't create table不能创建表
2024-01-22 19:57:22
重温Javascript继承机制
2011-07-04 12:17:23
Mysql事物锁等待超时Lock wait timeout exceeded;的解决
2024-01-22 03:51:08
JavaScript Memoization
2008-05-01 12:48:00