Python实现二分法查找及优化的示例详解

作者:Python?集中营 时间:2023-10-12 14:20:44 

二分查找法(Binary Search)是一种在有序数组中查找某一特定元素的算法,它的思想是将数组从中间分成两部分,判断目标元素在哪一部分中,然后继续在相应的部分中进行查找,直到找到目标元素或者确定目标元素不存在为止。

在本文中,我们将使用 Python 实现二分查找算法,并深入探讨算法的原理和实现细节。

1.二分查找的原理

二分查找法适用于有序数组中查找某一特定元素的场景,它的原理是将有序数组分成两个部分,每次取中间位置的元素与目标元素进行比较,根据比较结果确定要查找的元素在左边部分还是右边部分,然后继续在相应的部分中进行查找。

这样每次都能将待查找区间缩小一半,直到找到目标元素或者确定目标元素不存在为止。

Python实现二分法查找及优化的示例详解

二分查找法的时间复杂度为 O(log n),其中 n 表示数组的长度。这是因为每次查找都将查找区间缩小一半,最坏情况下需要查找 log n 次。

2.二分查找的实现

接下来,我们将使用 Python 实现二分查找算法。首先,我们定义一个函数binary_search,接收两个参数:一个有序数组 arr 和一个目标元素 target。

函数返回目标元素在数组中的下标,如果不存在则返回 -1。

def binary_search(arr, target):
    left = 0
    right = len(arr) - 1
    while left <= right:
        mid = (left + right) // 2
        if arr[mid] == target:
            return mid
        elif arr[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    return -1

在这个函数中,我们定义了两个指针 left 和 right,分别指向数组的第一个元素和最后一个元素。

然后,我们进入一个循环,直到 left > right 为止。在每次循环中,我们计算中间位置的下标 mid,并将 arr[mid] 与 target 进行比较。

如果 arr[mid] 等于 target,说明我们已经找到了目标元素,直接返回 mid。如果 arr[mid] 小于 target,说明目标元素在右边部分,我们将 left 指针移到 mid 的右边一位。

如果 arr[mid] 大于 target,说明目标元素在左边部分,我们将 right 指针移到 mid 的左边一位。这样不断缩小查找区间,直到找到目标元素或者确定目标元素不存在为止。下面是一个使用例子:

arr = [1, 3, 5, 7, 9]
target = 7
result = binary_search(arr, target)
if result == -1:
    print("Element is not present in array")
else:
    print("Element is present at index", result)

在这个例子中,我们定义了一个有序数组 arr 和一个目标元素 target,并调用了 binary_search 函数。

如果目标元素存在于数组中,函数将返回目标元素在数组中的下标;否则返回 -1。

在这个例子中,目标元素 7 存在于数组中,函数将输出 &ldquo;Element is present at index 3&rdquo;。

Python实现二分法查找及优化的示例详解

3.二分查找的优化

虽然二分查找法的时间复杂度为 O(log n),但是在实际应用中,我们可以通过一些优化来进一步提高算法的效率。

(1)查找区间的左右边界

在二分查找法中,我们需要定义一个查找区间,通常用 left 和 right 两个指针来表示。

在每次循环中,我们需要判断 left 和 right 是否重合,如果重合则说明查找区间为空,目标元素不存在于数组中。

这个判断过程需要进行多次,可以通过在循环条件中直接判断 left 和 right 是否相邻来减少判断次数,如下所示:

while left < right:
    mid = (left + right) // 2
    if arr[mid] == target:
        return mid
    elif arr[mid] < target:
        left = mid + 1
    else:
        right = mid - 1
if arr[left] == target:
    return left
else:
    return -1

在这个优化中,我们将循环条件改为 left < right,这样每次循环结束后,left 和 right 最多相差 1。

在循环结束后,我们需要判断 left 和 right 是否指向目标元素。如果 arr[left] 等于 target,则说明目标元素存在于数组中,返回 left;否则返回 -1。

(2)位运算代替除法运算

在计算中间位置的下标 mid 时,我们通常使用除法运算符 //。然而,除法运算符比位运算符效率低得多,因此我们可以使用位运算符 >> 来代替除法运算符 //,如下所示:

mid = (left + right) >> 1

在这个优化中,我们将除以 2 改为右移 1 位,即将二进制数向右移动一位,相当于除以 2。这样可以减少计算中间位置的下标所需的时间。

(3)使用 bisect 库

Python 中的 bisect 库提供了一些实用的函数,可以帮助我们更方便地进行二分查找。

其中,bisect_left 函数和 bisect_right 函数分别用于在有序数组中查找某一元素的插入位置。

这两个函数的区别在于,当有多个相同的元素时,bisect_left 函数返回第一个位置,而 bisect_right 函数返回最后一个位置。

下面是一个使用 bisect 库进行二分查找的例子:

import bisect
arr = [1, 3, 5, 7, 9]
target = 7
index = bisect.bisect_left(arr, target)
if index < len(arr) and arr[index] == target:
    print("Element is present at index", index)
else:
    print("Element is not present in array")

在这个例子中,我们使用 bisect.bisect_left 函数在有序数组 arr 中查找目标元素 target 的插入位置。

如果插入位置小于数组长度,并且插入位置处的元素等于目标元素,则说明目标元素存在于数组中,输出其下标;否则输出 &ldquo;Element is not present in array&rdquo;。

4.总结

二分查找法是一种高效的查找算法,适用于有序数组中查找某一特定元素的场景。通过将数组从中间分成两部分,每次取中间位置的元素与目标元素进行比较,可以将待查找区间缩小一半,从而降低查找的时间复杂度。

在实现二分查找算法时,我们需要定义一个查找区间,通常用 left 和 right 两个指针来表示。在每次循环中,我们计算中间位置的下标 mid,并将 arr[mid] 与 target 进行比较。如果 arr[mid] 等于 target,说明我们已经找到了目标元素,直接返回 mid。

如果 arr[mid] 小于 target,说明目标元素在右边部分,我们将 left 指针移到 mid 的右边一位。如果 arr[mid] 大于 target,说明目标元素在左边部分,我们将 right 指针移到 mid 的左边一位。这样不断缩小查找区间,直到找到目标元素或者确定目标元素不存在为止。

Python实现二分法查找及优化的示例详解

在实际应用中,我们可以通过一些优化来进一步提高算法的效率。例如,可以在循环条件中直接判断 left 和 right 是否相邻来减少判断次数;可以使用位运算符 >> 来代替除法运算符 //,减少计算中间位置的下标所需的时间;可以使用 bisect 库提供的函数来进行二分查找,更方便地实现算法。

来源:https://mp.weixin.qq.com/s/KAvg2Lr_XnuNzMiGPqv9fQ

标签:Python,二分法查找
0
投稿

猜你喜欢

  • Python中dumps与dump及loads与load的区别

    2021-10-01 09:13:20
  • 如何基于Python和Flask编写Prometheus监控

    2021-03-21 13:37:13
  • 定义列表 dt dl

    2008-08-03 17:14:00
  • Python获取文件所在目录和文件名的方法

    2021-04-07 05:44:35
  • Python图像的增强处理操作示例【基于ImageEnhance类】

    2022-02-12 04:31:46
  • Php header()函数语法及使用代码

    2023-09-04 13:32:20
  • 2011年网页设计发展趋势

    2011-01-10 20:45:00
  • Golang中数据结构Queue的实现方法详解

    2024-04-26 17:20:00
  • 详解python中的闭包

    2023-09-25 13:37:33
  • php进程daemon化的正确实现方法

    2023-10-01 09:14:09
  • Python利用机器学习算法实现垃圾邮件的识别

    2021-02-24 04:31:04
  • python使用tkinter实现透明窗体

    2022-09-10 00:58:40
  • Ubuntu10下如何搭建MySQL Proxy读写分离探讨

    2024-01-20 08:04:43
  • ASP利用 xmlhttp 分块上传文件

    2007-11-01 22:55:00
  • Python基于正则表达式实现检查文件内容的方法【文件检索】

    2021-06-11 07:58:45
  • 19个ASP编程基础典型代码

    2008-10-23 15:46:00
  • SpringSecurity框架简介及与shiro特点对比

    2023-01-03 13:56:25
  • Python 处理表格进行成绩排序的操作代码

    2022-08-25 02:49:36
  • python实现xml转json文件的示例代码

    2023-09-29 23:52:50
  • 基于Python制作B站视频下载小工具

    2023-11-18 11:58:50
  • asp之家 网络编程 m.aspxhome.com