Python可视化学习之seaborn绘制矩阵图详解

作者:qq_21478261 时间:2023-02-27 09:25:36 

本文内容速览

Python可视化学习之seaborn绘制矩阵图详解

Python可视化学习之seaborn绘制矩阵图详解

1、绘图数据准备

还是使用鸢尾花iris数据集

#导入本帖要用到的库,声明如下:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
from sklearn import datasets
import seaborn as sns

#导入鸢尾花iris数据集(方法一)
#该方法更有助于理解数据集
iris=datasets.load_iris()
x, y =iris.data,iris.target
y_1 = np.array(['setosa' if i==0 else 'versicolor' if i==1 else 'virginica' for i in y])
pd_iris = pd.DataFrame(np.hstack((x, y_1.reshape(150,1))),columns=['sepal length(cm)','sepal width(cm)','petal length(cm)','petal width(cm)','class'])

#astype修改pd_iris中数据类型object为float64
pd_iris['sepal length(cm)']=pd_iris['sepal length(cm)'].astype('float64')
pd_iris['sepal width(cm)']=pd_iris['sepal width(cm)'].astype('float64')
pd_iris['petal length(cm)']=pd_iris['petal length(cm)'].astype('float64')
pd_iris['petal width(cm)']=pd_iris['petal width(cm)'].astype('float64')

#导入鸢尾花iris数据集(方法二)
#import seaborn as sns
#iris_sns = sns.load_dataset("iris")

数据集简单统计

Python可视化学习之seaborn绘制矩阵图详解

2、seaborn.pairplot

语法:seaborn.pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind='scatter', diag_kind='auto', markers=None, height=2.5, aspect=1, corner=False, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None, size=None)

g = sns.pairplot(pd_iris)
g.fig.set_size_inches(12,12)#figure大小
sns.set(style='whitegrid',font_scale=1.5)#文本大小

Python可视化学习之seaborn绘制矩阵图详解

对角线4张图是变量自身的分布直方图;

非对角线的 12 张就是某个变量和另一个变量的关系。

加上分类变量

g = sns.pairplot(pd_iris,
                hue='class'#按照三种花分类
               )
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

修改调色盘

可以使用Matplotlib、seaborn、颜色号list等色盘。

可参考:Python可视化学习之seaborn调色盘

import palettable
g = sns.pairplot(pd_iris,
                hue='class',
                palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,#palettable颜色盘

)
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

g = sns.pairplot(pd_iris,
                hue='class',
               palette='Set1',#Matplotlib颜色

)
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

g = sns.pairplot(pd_iris,
                hue='class',
               palette=['#dc2624', '#2b4750', '#45a0a2'],#使用传入的颜色list

)
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

x,y轴方向选取相同子集 

import palettable
g = sns.pairplot(pd_iris,
                hue='class',
                palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                vars=['sepal length(cm)','sepal width(cm)'],#x,y轴方向选取相同子集绘图

)
sns.set(style='whitegrid')
g.fig.set_size_inches(12,6)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

x,y轴方向选取不同子集

import palettable
g = sns.pairplot(pd_iris,
                hue='class',
                palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                x_vars=['sepal length(cm)','sepal width(cm)'],#x,y轴方向选取不同子集
                y_vars=['petal length(cm)','petal width(cm)'],

)
sns.set(style='whitegrid')
g.fig.set_size_inches(12,6)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

非对角线散点图加趋势线 

import palettable
g = sns.pairplot(pd_iris,
                hue='class',
                palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                kind='reg',#默认为scatter,reg加上趋势线                

)
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

对角线上的四个图绘制方式

可选参数为‘auto’, ‘hist’(默认), ‘kde’, None。

import palettable
g = sns.pairplot(pd_iris,
                hue='class',
                palette=palettable.cartocolors.qualitative.Bold_9.mpl_colors,
                diag_kind='hist',#hist直方图              

)
sns.set(style='whitegrid')
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

只显示网格下三角图形 

import palettable
g = sns.pairplot(pd_iris,
                hue='class',
                palette='Set1',
                corner=True#图形显示左下角

)

g.fig.set_size_inches(12,12)
sns.set(font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

图形外观设置 

import palettable
g = sns.pairplot(pd_iris,
                hue='class',
                palette='Set1',
                markers=['$\clubsuit$','.','+'],#散点图的marker
                plot_kws=dict(s=50, edgecolor="r", linewidth=1),#非对角线上的图marker大小、外框、外框线宽
                diag_kws=dict(shade=True)#对角线上核密度图是否填充

)
g.fig.set_size_inches(12,12)
sns.set(font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

3、seaborn.PairGrid(更灵活的绘制矩阵图)

seaborn.PairGrid(data, hue=None, hue_order=None, palette=None, hue_kws=None, vars=None, x_vars=None, y_vars=None, corner=False, diag_sharey=True, height=2.5, aspect=1, layout_pad=0, despine=True, dropna=True, size=None)

每个子图绘制同类型的图

g = sns.PairGrid(pd_iris,
                hue='class',
                palette='husl',)
g = g.map(plt.scatter)#map每个子图绘制一样类型的图
g = g.add_legend()
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

对角线和非对角线分别绘制不同类型图

g = sns.PairGrid(pd_iris,
                hue='class',
               palette='Set1',)
g = g.map_diag(plt.hist)#对角线绘制直方图
g = g.map_offdiag(plt.scatter)#非对角线绘制散点图
g = g.add_legend()
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

对角线上方、对角线、对角线下方分别绘制不同类型图

g = sns.PairGrid(pd_iris, hue='class',)
g = g.map_upper(sns.scatterplot)
g = g.map_lower(sns.kdeplot, colors="C0")
g = g.map_diag(sns.kdeplot, lw=2)3绘制核密度图
g = g.add_legend()#添加图例
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

其它一些参数修改

g = sns.PairGrid(pd_iris, hue='class',
                palette='Set1',
                hue_kws={"marker": ["^", "s", "D"]},#设置marker
                diag_sharey=False,
               )
g = g.map_upper(sns.scatterplot,edgecolor="w", s=40)#设置点大小,外框颜色
g = g.map_lower(sns.kdeplot, colors="#01a2d9")#设置下三角图形颜色
g = g.map_diag(sns.kdeplot, lw=3)#对角图形颜色
g = g.add_legend()#添加图例
g.fig.set_size_inches(12,12)
sns.set(style='whitegrid',font_scale=1.5)

Python可视化学习之seaborn绘制矩阵图详解

来源:https://blog.csdn.net/qq_21478261/article/details/108158000

标签:Python,seaborn,可视化,矩阵图
0
投稿

猜你喜欢

  • XML HttpRequst对象学习

    2007-10-12 19:04:00
  • 表单设计中的网页视觉体验

    2008-06-26 13:35:00
  • 用JMail、CDONTS发送邮件asp源码

    2007-09-24 15:58:00
  • python 实现IP子网计算

    2022-04-24 20:27:37
  • python模块之subprocess模块级方法的使用

    2022-05-10 03:28:32
  • python 中字典嵌套列表的方法

    2022-05-17 04:54:15
  • 在CentOS 6 中安装WordPress(一) 安装Apache,Mysql, PHP环境

    2023-11-06 17:41:24
  • django 多数据库及分库实现方式

    2024-01-14 01:13:00
  • 详解pytest实现mark标记功能详细介绍

    2022-01-16 23:59:48
  • js和php邮箱地址验证的实现方法

    2024-06-05 09:38:13
  • Django 状态保持搭配与存储的实现

    2021-05-10 04:16:00
  • 解决使用OpenCV中的imread()内存报错问题

    2022-06-06 03:14:21
  • Golang 使用gorm添加数据库排他锁,for update

    2024-01-29 09:34:53
  • Python脚本传参数argparse模块的使用

    2023-02-28 23:07:21
  • python如何使用代码运行助手

    2022-08-27 21:11:19
  • XPath详解,总结

    2009-04-17 14:09:00
  • Python random库使用方法及异常处理方案

    2023-10-07 13:43:46
  • 列表模块是否需要标题

    2009-06-25 14:11:00
  • 深入理解Golang中指针的用途与技巧

    2024-05-21 10:23:13
  • Golang递归获取目录下所有文件方法实例

    2024-04-25 15:19:00
  • asp之家 网络编程 m.aspxhome.com