Python绘制K线图之可视化神器pyecharts的使用

作者:王小王-123 时间:2023-06-28 12:30:58 

K线图

Python绘制K线图之可视化神器pyecharts的使用

概念

股市及期货市bai场中的K线图的du画法包含四个zhi数据,即开盘dao价、最高价、最低价zhuan、收盘价,所有的shuk线都是围绕这四个数据展开,反映大势的状况和价格信息。如果把每日的K线图放在一张纸上,就能得到日K线图,同样也可画出周K线图、月K线图。研究金融的小伙伴肯定比较熟悉这个,那么我们看起来比较复杂的K线图,又是这样画出来的,本文我们将一起探索K线图的魅力与神奇之处吧!

K线图

用处

K线图用处于股票分析,作为数据分析,以后的进入大数据肯定是一个趋势和热潮,K线图的专业知识,说实话肯定比较的复杂,这里就不做过多的展示了,有兴趣的小伙伴去问问百度小哥哥哟!

K线图系列模板

最简单的K线图绘制

第一个K线图绘制,来看看需要哪些参数吧,数据集都有四个必要的哟!


import pyecharts.options as opts
from pyecharts.charts import Candlestick

x_data = ["2017-10-24", "2017-10-25", "2017-10-26", "2017-10-27"]
y_data = [[20, 30, 10, 35], [40, 35, 30, 55], [33, 38, 33, 40], [40, 40, 32, 42]]

(
Candlestick(init_opts=opts.InitOpts(width="1200px", height="600px"))
.add_xaxis(xaxis_data=x_data)
.add_yaxis(series_name="", y_axis=y_data)
.set_series_opts()
.set_global_opts(
 yaxis_opts=opts.AxisOpts(
  splitline_opts=opts.SplitLineOpts(
   is_show=True, linestyle_opts=opts.LineStyleOpts(width=1)
  )
 )
)
.render("简单K线图.html")
)

Python绘制K线图之可视化神器pyecharts的使用

K线图鼠标缩放

大量的数据集的时候,我们不可以全部同时展示,我们可以缩放来进行定向展示。


from pyecharts import options as opts
from pyecharts.charts import Kline

data = [
[2320.26, 2320.26, 2287.3, 2362.94],
[2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92],
[2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76],
[2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15],
[2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42],
[2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89],
[2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8],
[2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94],
[2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88],
[2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71],
[2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16],
[2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54],
[2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44],
[2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67],
[2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29],
[2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22],
]

c = (
Kline()
.add_xaxis(["2017/7/{}".format(i + 1) for i in range(31)])
.add_yaxis(
 "kline",
 data,
 itemstyle_opts=opts.ItemStyleOpts(
  color="#ec0000",
  color0="#00da3c",
  border_color="#8A0000",
  border_color0="#008F28",
 ),
)
.set_global_opts(
 xaxis_opts=opts.AxisOpts(is_scale=True),
 yaxis_opts=opts.AxisOpts(
  is_scale=True,
  splitarea_opts=opts.SplitAreaOpts(
   is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
  ),
 ),
 datazoom_opts=[opts.DataZoomOpts(type_="inside")],
 title_opts=opts.TitleOpts(title="Kline-ItemStyle"),
)
.render("K线图鼠标缩放.html")
)

Python绘制K线图之可视化神器pyecharts的使用

有刻度标签的K线图

我们知道一个数据节点,但是我们不能在图像里面一眼看出有哪些数据量超出了它的范围,刻度标签就可以派上用场了。


from pyecharts import options as opts
from pyecharts.charts import Kline

data = [
[2320.26, 2320.26, 2287.3, 2362.94],
[2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92],
[2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76],
[2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15],
[2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42],
[2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89],
[2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8],
[2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94],
[2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88],
[2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71],
[2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16],
[2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54],
[2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44],
[2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67],
[2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29],
[2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22],
]

c = (
Kline()
.add_xaxis(["2017/7/{}".format(i + 1) for i in range(31)])
.add_yaxis(
 "kline",
 data,
 markline_opts=opts.MarkLineOpts(
  data=[opts.MarkLineItem(type_="max", value_dim="close")]
 ),
)
.set_global_opts(
 xaxis_opts=opts.AxisOpts(is_scale=True),
 yaxis_opts=opts.AxisOpts(
  is_scale=True,
  splitarea_opts=opts.SplitAreaOpts(
   is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
  ),
 ),
 title_opts=opts.TitleOpts(title="标题"),
)
.render("刻度标签.html")
)

Python绘制K线图之可视化神器pyecharts的使用

K线图鼠标无缩放

前面的是一个有缩放功能的图例代码,但是有时候我们不想要那么修改一下参数就可以了。


from pyecharts import options as opts
from pyecharts.charts import Kline

data = [
[2320.26, 2320.26, 2287.3, 2362.94],
[2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92],
[2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76],
[2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15],
[2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42],
[2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89],
[2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8],
[2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94],
[2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88],
[2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71],
[2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16],
[2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54],
[2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44],
[2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67],
[2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29],
[2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22],
]

c = (
Kline()
.add_xaxis(["2017/7/{}".format(i + 1) for i in range(31)])
.add_yaxis("kline", data)
.set_global_opts(
 yaxis_opts=opts.AxisOpts(is_scale=True),
 xaxis_opts=opts.AxisOpts(is_scale=True),
 title_opts=opts.TitleOpts(title="Kline-基本示例"),
)
.render("鼠标无缩放.html")
)

Python绘制K线图之可视化神器pyecharts的使用

大量数据K线图绘制(X轴鼠标可移动)

虽然有时候缩放可以容纳较多的数据量,但是还是不够智能,可以利用这个


from pyecharts import options as opts
from pyecharts.charts import Kline

data = [
[2320.26, 2320.26, 2287.3, 2362.94],
[2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92],
[2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76],
[2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15],
[2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42],
[2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89],
[2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8],
[2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94],
[2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88],
[2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71],
[2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16],
[2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54],
[2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44],
[2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67],
[2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29],
[2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22],
]

c = (
Kline()
.add_xaxis(["2017/7/{}".format(i + 1) for i in range(31)])
.add_yaxis("kline", data)
.set_global_opts(
 xaxis_opts=opts.AxisOpts(is_scale=True),
 yaxis_opts=opts.AxisOpts(
  is_scale=True,
  splitarea_opts=opts.SplitAreaOpts(
   is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
  ),
 ),
 datazoom_opts=[opts.DataZoomOpts(pos_bottom="-2%")],
 title_opts=opts.TitleOpts(title="Kline-DataZoom-slider-Position"),
)
.render("大量数据展示.html")
)

Python绘制K线图之可视化神器pyecharts的使用

Python绘制K线图之可视化神器pyecharts的使用

K线图的绘制需要有专业的基本知识哟,不然可能有点恼火了。

来源:https://blog.csdn.net/weixin_47723732/article/details/113887876

标签:Python,K线图
0
投稿

猜你喜欢

  • python字符串过滤性能比较5种方法

    2021-09-26 18:35:25
  • python有序查找算法 二分法实例解析

    2023-04-15 07:55:36
  • 教你如何利用Python批量翻译英文Word文档并保留格式

    2022-10-18 21:27:17
  • 打印出python 当前全局变量和入口参数的所有属性

    2022-09-01 07:06:51
  • 使用有趣的自定义标记布局页面

    2012-07-12 01:29:03
  • 利用Python爬虫给孩子起个好名字

    2022-04-25 23:40:29
  • 互联网产品的用户体验看着“很美”

    2009-07-07 12:04:00
  • javascript定时变换图片实例代码

    2024-04-17 10:24:14
  • python socket 聊天室实例代码详解

    2023-06-03 16:37:57
  • Mysql5.7如何修改root密码

    2024-01-26 21:22:28
  • vue使用pdf.js预览pdf文件的方法

    2024-04-27 16:06:24
  • 必须会的SQL语句(二) 创建表、修改表结构、删除表

    2024-01-19 16:51:16
  • SQL Server 复制需要有实际的服务器名称才能连接到服务器

    2024-01-18 09:17:15
  • Django contenttypes 框架详解(小结)

    2023-11-13 14:39:47
  • @ResponseBody 和 @RequestBody 注解的区别

    2024-04-16 09:35:00
  • Python面向对象编程基础实例分析

    2023-03-31 16:39:58
  • Django学习笔记之ORM基础教程

    2022-07-25 22:59:07
  • Excel和Access之间的数据交换

    2008-11-20 16:53:00
  • python3判断url链接是否为404的方法

    2021-11-12 15:17:54
  • Javascript脚本实现静态网页加密实例代码

    2024-04-19 11:04:30
  • asp之家 网络编程 m.aspxhome.com