keras打印loss对权重的导数方式
作者:HackerTom 时间:2023-05-17 18:21:11
Notes
怀疑模型梯度 * ,想打印模型 loss 对各权重的导数看看。如果如果fit来训练的话,可以用keras.callbacks.TensorBoard实现。
但此次使用train_on_batch来训练的,用K.gradients和K.function实现。
Codes
以一份 VAE 代码为例
# -*- coding: utf8 -*-
import keras
from keras.models import Model
from keras.layers import Input, Lambda, Conv2D, MaxPooling2D, Flatten, Dense, Reshape
from keras.losses import binary_crossentropy
from keras.datasets import mnist, fashion_mnist
import keras.backend as K
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
BATCH = 128
N_CLASS = 10
EPOCH = 5
IN_DIM = 28 * 28
H_DIM = 128
Z_DIM = 2
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train = x_train.reshape(len(x_train), -1).astype('float32') / 255.
x_test = x_test.reshape(len(x_test), -1).astype('float32') / 255.
def sampleing(args):
"""reparameterize"""
mu, logvar = args
eps = K.random_normal([K.shape(mu)[0], Z_DIM], mean=0.0, stddev=1.0)
return mu + eps * K.exp(logvar / 2.)
# encode
x_in = Input([IN_DIM])
h = Dense(H_DIM, activation='relu')(x_in)
z_mu = Dense(Z_DIM)(h) # mean,不用激活
z_logvar = Dense(Z_DIM)(h) # log variance,不用激活
z = Lambda(sampleing, output_shape=[Z_DIM])([z_mu, z_logvar]) # 只能有一个参数
encoder = Model(x_in, [z_mu, z_logvar, z], name='encoder')
# decode
z_in = Input([Z_DIM])
h_hat = Dense(H_DIM, activation='relu')(z_in)
x_hat = Dense(IN_DIM, activation='sigmoid')(h_hat)
decoder = Model(z_in, x_hat, name='decoder')
# VAE
x_in = Input([IN_DIM])
x = x_in
z_mu, z_logvar, z = encoder(x)
x = decoder(z)
out = x
vae = Model(x_in, [out, out], name='vae')
# loss_kl = 0.5 * K.sum(K.square(z_mu) + K.exp(z_logvar) - 1. - z_logvar, axis=1)
# loss_recon = binary_crossentropy(K.reshape(vae_in, [-1, IN_DIM]), vae_out) * IN_DIM
# loss_vae = K.mean(loss_kl + loss_recon)
def loss_kl(y_true, y_pred):
return 0.5 * K.sum(K.square(z_mu) + K.exp(z_logvar) - 1. - z_logvar, axis=1)
# vae.add_loss(loss_vae)
vae.compile(optimizer='rmsprop',
loss=[loss_kl, 'binary_crossentropy'],
loss_weights=[1, IN_DIM])
vae.summary()
# 获取模型权重 variable
w = vae.trainable_weights
print(w)
# 打印 KL 对权重的导数
# KL 要是 Tensor,不能是上面的函数 `loss_kl`
grad = K.gradients(0.5 * K.sum(K.square(z_mu) + K.exp(z_logvar) - 1. - z_logvar, axis=1),
w)
print(grad) # 有些是 None 的
grad = grad[grad is not None] # 去掉 None,不然报错
# 打印梯度的函数
# K.function 的输入和输出必要是 list!就算只有一个
show_grad = K.function([vae.input], [grad])
# vae.fit(x_train, # y_train, # 不能传 y_train
# batch_size=BATCH,
# epochs=EPOCH,
# verbose=1,
# validation_data=(x_test, None))
''' 以 train_on_batch 方式训练 '''
for epoch in range(EPOCH):
for b in range(x_train.shape[0] // BATCH):
idx = np.random.choice(x_train.shape[0], BATCH)
x = x_train[idx]
l = vae.train_on_batch([x], [x, x])
# 计算梯度
gd = show_grad([x])
# 打印梯度
print(gd)
# show manifold
PIXEL = 28
N_PICT = 30
grid_x = norm.ppf(np.linspace(0.05, 0.95, N_PICT))
grid_y = grid_x
figure = np.zeros([N_PICT * PIXEL, N_PICT * PIXEL])
for i, xi in enumerate(grid_x):
for j, yj in enumerate(grid_y):
noise = np.array([[xi, yj]]) # 必须秩为 2,两层中括号
x_gen = decoder.predict(noise)
# print('x_gen shape:', x_gen.shape)
x_gen = x_gen[0].reshape([PIXEL, PIXEL])
figure[i * PIXEL: (i+1) * PIXEL,
j * PIXEL: (j+1) * PIXEL] = x_gen
fig = plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
fig.savefig('./variational_autoencoder.png')
plt.show()
补充知识:keras 自定义损失 自动求导时出现None
问题记录,keras 自定义损失 自动求导时出现None,后来想到是因为传入的变量没有使用,所以keras无法求出偏导,修改后问题解决。就是不愿使用的变量×0,求导后还是0就可以了。
def my_complex_loss_graph(y_label, emb_uid, lstm_out,y_true_1,y_true_2,y_true_3,out_1,out_2,out_3):
mse_out_1 = mean_squared_error(y_true_1, out_1)
mse_out_2 = mean_squared_error(y_true_2, out_2)
mse_out_3 = mean_squared_error(y_true_3, out_3)
# emb_uid= K.reshape(emb_uid, [-1, 32])
cosine_sim = tf.reduce_sum(0.5*tf.square(emb_uid-lstm_out))
cost=0*cosine_sim+K.sum([0.5*mse_out_1 , 0.25*mse_out_2,0.25*mse_out_3],axis=1,keepdims=True)
# print(mse_out_1)
final_loss = cost
return K.mean(final_loss)
来源:https://blog.csdn.net/HackerTom/article/details/90177044
标签:keras,loss,权重,导数
0
投稿
猜你喜欢
Python真题案例之二分法查找详解
2023-09-23 01:39:07
使用Golang的singleflight防止缓存击穿的方法
2024-05-22 10:12:29
ASP 操作cookies的方法
2011-03-10 11:24:00
vs10安装之后一些列问题
2024-01-29 11:59:48
Python3导入CSV文件的实例(跟Python2有些许的不同)
2023-09-21 05:19:29
Python 读取千万级数据自动写入 MySQL 数据库
2023-11-08 09:25:47
Python中循环后使用list.append()数据被覆盖问题的解决
2023-02-08 20:45:49
python面向对象_详谈类的继承与方法的重载
2021-03-21 08:38:18
python使用matplotlib画饼状图
2023-04-06 12:23:29
vue2.x集成百度UEditor富文本编辑器的方法
2024-05-28 15:47:59
python 使用socket传输图片视频等文件的实现方式
2022-11-12 11:55:37
正则表达式学习笔记
2008-04-15 07:44:00
任意定制文本对齐方式:CSS Text Wrapper
2008-02-03 11:11:00
Golang优雅关闭channel的方法示例
2024-05-03 15:05:44
PHP简单实现冒泡排序的方法
2024-06-07 15:45:49
Python语言进阶知识点总结
2022-11-09 01:21:37
Python实现抓取腾讯视频所有电影的示例代码
2021-09-11 13:17:37
python爬虫用mongodb的理由
2023-09-27 23:06:40
基于numpy中数组元素的切片复制方法
2023-07-24 03:14:41
自动完成JS类(纯JS, Ajax模式)
2024-05-11 09:41:59