Django查询数据库的性能优化示例代码

作者:daisy 时间:2024-01-22 22:18:48 

前言

Django数据层提供各种途径优化数据的访问,一个项目大量优化工作一般是放在后期来做,早期的优化是“万恶之源”,这是前人总结的经验,不无道理。如果事先理解Django的优化技巧,开发过程中稍稍留意,后期会省不少的工作量。

现在有一张记录用户信息的UserInfo数据表,表中记录了10个用户的姓名,呢称,年龄,工作等信息.

models文件


from django.db import models

class Job(models.Model):
 title=models.CharField(max_length=32)

class UserInfo(models.Model):
 username=models.CharField(max_length=32)
 nickname=models.CharField(max_length=32)
 job=models.ForeignKey(to="Job",to_field="id",null=True)

数据表中记录:

Django查询数据库的性能优化示例代码

另一张数据表记录用户工作的Job表,关联用户的工作字段.

Django查询数据库的性能优化示例代码

要查出每个用户的用户名,呢称和工作等信息


def index(request):
 user_list=models.UserInfo.objects.all()

print(user_list.query)  # 打印查询时使用的语句
 print(type(user_list))  # 打印查询结果的数据类型

for user in user_list:

print("%s-->%s-->%s" %(user.username,user.nickname,user.job.title))

return render(request,'index.html')

打印信息:


SELECT "app01_userinfo"."id", "app01_userinfo"."username", "app01_userinfo"."nickname", "app01_userinfo"."job_id" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user1-->user1-->python
user2-->user2-->linux
user3-->user3-->golang
user4-->user4-->python
user5-->user5-->linux
user6-->user6-->golang
user7-->user7-->python
user8-->user8-->linux
user9-->user9-->golang
user10-->user10-->linux

在服务端进行这些操作,这些查询语句的性能是很低的,遍历取出这10个用户的姓名,呢称,工作等信息要在两张数据库中执行11次查询操作.

首先只从UserInfo表中查出所有的用户记录,需要执行一次查询操作.

查询Job数据表,每循环一次用户信息的列表,都需要从Job表中查询一次用户的工作信息.

数据表中总共记录了10条用户记录,所以还需要循环10次才能从Job表中查询完成所有用户的工作信息.所以一共需要执行11次数据库查询操作.

那有没有什么好的方法能够提高数据库查询的效率呢???


def index(request):
 user_list=models.UserInfo.objects.values("username","nickname","job")

print(user_list.query)  # 打印查询时使用的语句
 print(type(user_list))  # 打印查询结果的数据类型
 print("user_list:",user_list)

for user in user_list:

print(user["username"], user["nickname"], user["job"])

return render(request,'index.html')

运行程序,在服务端后台打印信息:


SELECT "app01_userinfo"."username", "app01_userinfo"."nickname", "app01_userinfo"."job_id" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [{'username': 'user1', 'nickname': 'user1', 'job': 1}, {'username': 'user2', 'nickname': 'user2', 'job': 2}, {'username': 'user3', 'nickname': 'user3', 'job': 3}, {'username': 'user4', 'nickname': 'user4', 'job': 1}, {'username': 'user5', 'nickname': 'user5', 'job': 2}, {'username': 'user6', 'nickname': 'user6', 'job': 3}, {'username': 'user7', 'nickname': 'user7', 'job': 1}, {'username': 'user8', 'nickname': 'user8', 'job': 2}, {'username': 'user9', 'nickname': 'user9', 'job': 3}, {'username': 'user10', 'nickname': 'user10', 'job': 2}]>
user1 user1 1
user2 user2 2
user3 user3 3
user4 user4 1
user5 user5 2
user6 user6 3
user7 user7 1
user8 user8 2
user9 user9 3
user10 user10 2

可以看到,查询的结果user_list依然是一个QuerySet,但这个对象集合内部却是一个字典.

而且这次的查询只执行了两次数据库查询操作.

通过这种方式,只需要两次查询就能得到想要的数据,优化了数据库的查询效率.

Django数据库优化操作之select_related主动联表查询

上面的例子里,取对象集合的时候,难道只能查询当前数据表,不能查询其他数据表吗??

当然不是,在这里还可以使用select_related这个方法.

在第一次查询的时候,在all()后面加上一个select_related来做主动的联表查询.

在创建这两张数据表时,job在UserInfo数据表中是做为一个ForeignKey存在的,所以加上select_related后不仅只查询到了UserInfo数据库的记录,同时也查询了Job数据表中的记录.


def index(request):
 user_list=models.UserInfo.objects.all().select_related("job")

print(user_list.query)  # 打印查询时使用的语句
 print(type(user_list))  # 打印查询结果的数据类型
 print("user_list:",user_list)

for user in user_list:

print("%s-->%s-->%s" %(user.username,user.nickname,user.job.title))

return render(request,'index.html')

服务端打印结果


SELECT "app01_userinfo"."id", "app01_userinfo"."username", "app01_userinfo"."nickname", "app01_userinfo"."job_id", "app01_job"."id", "app01_job"."title" FROM "app01_userinfo" LEFT OUTER JOIN "app01_job" ON ("app01_userinfo"."job_id" = "app01_job"."id")
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [<UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>]>
user1-->user1-->python
user2-->user2-->linux
user3-->user3-->golang
user4-->user4-->python
user5-->user5-->linux
user6-->user6-->golang
user7-->user7-->python
user8-->user8-->linux
user9-->user9-->golang
user10-->user10-->linux

查看打印出来的查询语句,其中有


"FROM "app01_userinfo" LEFT OUTER JOIN "app01_job" ON ("app01_userinfo"."job_id" = "app01_job"."id")"

用来做联表查询,只需要一次就可以查询所有的数据了.

同样的,如果还想继续联表,例如在Job表中再加一个外键字段desc,只需要在查询语句中把desc加入进来就可以了


user_list=models.UserInfo.objects.all().select_related("job__desc")

这样一来就把三张表联系起来做联表查询了,但是一定要确保所加的字段为ForeignKey.

如果使用类似models.UserInfo.objects.all()语句进行查询时,不要做跨表查询,只查询当前表中有的数据,否则查询语句的性能会下降很多.

如果想查其他表中的数据,就加上select_related(ForeignKey字段名);

如果想取多个ForeignKey字段的数据,则可以使用select_related(ForeignKey字段1,ForeignKey字段2,...)

联表查询操作性能也会降低,select_related就是用来做主动联表查询的.

Django数据库优化操作之perfetch_related非主动联表查询

perfetch_related方法是既非主动联表查询,又不进行很多查询语句的一种折衷方案

修改视图函数index


def index(request):

user_list=models.UserInfo.objects.all().prefetch_related("job")

print(user_list.query)  # 打印查询时使用的语句
 print(type(user_list))  # 打印查询结果的数据类型
 print("user_list:",user_list)

for user in user_list:

print("%s-->%s-->%s" %(user.username,user.nickname,user.job.title))

return render(request,'index.html')

后端打印结果


SELECT "app01_userinfo"."id", "app01_userinfo"."username", "app01_userinfo"."nickname", "app01_userinfo"."job_id" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [<UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>]>
user1-->user1-->python
user2-->user2-->linux
user3-->user3-->golang
user4-->user4-->python
user5-->user5-->linux
user6-->user6-->golang
user7-->user7-->python
user8-->user8-->linux
user9-->user9-->golang
user10-->user10-->linux

使用prefetch_related方法未联表执行两次查询操作

先查询用户表中的所有数据,把用户表中所有的job_id全部查询出来,并执行去重操作;

结果查询出用户的3种工作,接下来执行"select"语句查询"Job"数据表中的"title"字段

这样一来就只执行了两次数据表的查询操作

在prefetch_related方法中加入一个字段"job",执行了两次数据库查询操作;

如果再加一个字段,则会再多加一次数据为操作操作.

Django数据库优化操作之only方法


def index(request):
 user_list=models.UserInfo.objects.all().only("username")

print(user_list.query)  # 打印查询时使用的语句
 print(type(user_list))  # 打印查询结果的数据类型
 print("user_list:",user_list)

for user in user_list:

print("%s-->%s" %(user.username,user.nickname))

return render(request,'index.html')

服务端后台打印信息


SELECT "app01_userinfo"."id", "app01_userinfo"."username" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [<UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>]>
user1-->user1
user2-->user2
user3-->user3
user4-->user4
user5-->user5
user6-->user6
user7-->user7
user8-->user8
user9-->user9
user10-->user10

执行查询操作的时候加上only方法,其查询结果还是一个对象集合,但是从打印出的查询语句可以看到,执行查询操作时只查询了用户的id字段和username字段,并没有查询nickname字段.

但是在后面的循环中,又可以打印用户的nikename信息.为什么呢,因为又执行了一次查询的请求操作.由此得知,查询操作使用了only方法,在only方法中加入哪个查询字段,在后面就使用哪个查询字段.

加only参数是从查询结果中只取某个字段,而另外一个defer方法则是从查询结果中排除某个字段

Django数据库优化操作之defer方法

修改index视图函数


def index(request):
user_list=models.UserInfo.objects.all().defer("username")

print(user_list.query)  # 打印查询时使用的语句
print(type(user_list))  # 打印查询结果的数据类型
print("user_list:",user_list)

for user in user_list:

print("%s" % user.nickname)

return render(request,'index.html')

服务端打印信息


SELECT "app01_userinfo"."id", "app01_userinfo"."nickname", "app01_userinfo"."job_id" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [<UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>]>
user1
user2
user3
user4
user5
user6
user7
user8
user9
user10

通过打印的查询语句可以知道,使用defer方法后,只从数据库中查询了用户的id字段和用户的nickname字段操作,并没有查询username字段,由此也可以提高Django查询数据库的性能.

来源:http://www.cnblogs.com/renpingsheng/p/7583550.html

标签:django,性能优化,查询数据库
0
投稿

猜你喜欢

  • MySQL备份与恢复之热备(3)

    2024-01-21 04:50:04
  • 详解Python解决抓取内容乱码问题(decode和encode解码)

    2021-12-18 09:26:29
  • Pytorch中的 torch.distributions库详解

    2021-05-17 22:26:47
  • Golang Goroutine的使用

    2023-09-20 20:38:45
  • Python爬虫实战之爬取京东商品数据并实实现数据可视化

    2023-11-02 18:42:38
  • python中str内置函数用法总结

    2022-06-23 10:22:45
  • SQLite5-使用Python来读写数据库

    2024-01-15 23:44:08
  • python如何删除字符串最后一个字符

    2022-06-07 14:14:04
  • pytorch中forwod函数在父类中的调用方式解读

    2023-04-27 11:12:25
  • Python如何获取pid和进程名字

    2023-11-11 11:44:11
  • Django 解决上传文件时,request.FILES为空的问题

    2021-10-21 19:37:41
  • python paramiko远程服务器终端操作过程解析

    2022-10-08 00:50:14
  • pytorch神经网络之卷积层与全连接层参数的设置方法

    2023-07-11 14:21:27
  • python 进阶学习之python装饰器小结

    2023-05-12 07:13:42
  • python 反编译exe文件为py文件的实例代码

    2021-12-06 06:51:21
  • 关于JavaScript中的this指向问题总结篇

    2024-04-29 13:21:25
  • Python新手们容易犯的几个错误总结

    2021-06-22 12:19:54
  • Blender Python编程创建发光材质示例详解

    2022-08-20 21:06:19
  • .Net Core服务治理Consul搭建集群

    2024-05-09 09:03:07
  • oracle 发送邮件 实现方法

    2009-06-10 17:49:00
  • asp之家 网络编程 m.aspxhome.com