Golang实现请求限流的几种办法(小结)

作者:aside section 时间:2024-05-05 09:32:09 

在开发高并发系统时,有三把利器用来保护系统:缓存、降级和限流。那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了。

简单的并发控制

利用 channel 的缓冲设定,我们就可以来实现并发的限制。我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要)。让并发的 goroutine在执行完成后把这个 channel 里的东西给读走。这样整个并发的数量就讲控制在这个 channel的缓冲区大小上。

比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器。


chLimit := make(chan bool, 1)

然后在并发执行的地方,每创建一个新的 goroutine,都往 chLimit 里塞个东西。


for i, sleeptime := range input {
 chs[i] = make(chan string, 1)
 chLimit <- true
 go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
}

这里通过 go 关键字并发执行的是新构造的函数。他在执行完后,会把 chLimit的缓冲区里给消费掉一个。


limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
 Run(task_id, sleeptime, timeout, ch)
 <-chLimit
}

这样一来,当创建的 goroutine 数量到达 chLimit 的缓冲区上限后。主 goroutine 就挂起阻塞了,直到这些 goroutine 执行完毕,消费掉了 chLimit 缓冲区中的数据,程序才会继续创建新的 goroutine 。我们并发数量限制的目的也就达到了。

例子


package main

import (
 "fmt"
 "time"
)

func Run(task_id, sleeptime, timeout int, ch chan string) {
 ch_run := make(chan string)
 go run(task_id, sleeptime, ch_run)
 select {
 case re := <-ch_run:
   ch <- re
 case <-time.After(time.Duration(timeout) * time.Second):
   re := fmt.Sprintf("task id %d , timeout", task_id)
   ch <- re
 }
}

func run(task_id, sleeptime int, ch chan string) {

time.Sleep(time.Duration(sleeptime) * time.Second)
 ch <- fmt.Sprintf("task id %d , sleep %d second", task_id, sleeptime)
 return
}

func main() {
 input := []int{3, 2, 1}
 timeout := 2
 chLimit := make(chan bool, 1)
 chs := make([]chan string, len(input))
 limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
   Run(task_id, sleeptime, timeout, ch)
   <-chLimit
 }
 startTime := time.Now()
 fmt.Println("Multirun start")
 for i, sleeptime := range input {
   chs[i] = make(chan string, 1)
   chLimit <- true
   go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
 }

for _, ch := range chs {
   fmt.Println(<-ch)
 }
 endTime := time.Now()
 fmt.Printf("Multissh finished. Process time %s. Number of task is %d", endTime.Sub(startTime), len(input))
}

运行结果:

Multirun start
     task id 0 , timeout
     task id 1 , timeout
     task id 2 , sleep 1 second
     Multissh finished. Process time 5s. Number of task is 3

如果修改并发限制为2:


chLimit := make(chan bool, 2)

运行结果:

Multirun start
    task id 0 , timeout
    task id 1 , timeout
    task id 2 , sleep 1 second
    Multissh finished. Process time 3s. Number of task is 3

使用计数器实现请求限流

限流的要求是在指定的时间间隔内,server 最多只能服务指定数量的请求。实现的原理是我们启动一个计数器,每次服务请求会把计数器加一,同时到达指定的时间间隔后会把计数器清零;这个计数器的实现代码如下所示:


type RequestLimitService struct {
 Interval time.Duration
 MaxCount int
 Lock   sync.Mutex
 ReqCount int
}

func NewRequestLimitService(interval time.Duration, maxCnt int) *RequestLimitService {
 reqLimit := &RequestLimitService{
   Interval: interval,
   MaxCount: maxCnt,
 }

go func() {
   ticker := time.NewTicker(interval)
   for {
     <-ticker.C
     reqLimit.Lock.Lock()
     fmt.Println("Reset Count...")
     reqLimit.ReqCount = 0
     reqLimit.Lock.Unlock()
   }
 }()

return reqLimit
}

func (reqLimit *RequestLimitService) Increase() {
 reqLimit.Lock.Lock()
 defer reqLimit.Lock.Unlock()

reqLimit.ReqCount += 1
}

func (reqLimit *RequestLimitService) IsAvailable() bool {
 reqLimit.Lock.Lock()
 defer reqLimit.Lock.Unlock()

return reqLimit.ReqCount < reqLimit.MaxCount
}

在服务请求的时候, 我们会对当前计数器和阈值进行比较,只有未超过阈值时才进行服务:


var RequestLimit = NewRequestLimitService(10 * time.Second, 5)

func helloHandler(w http.ResponseWriter, r *http.Request) {
 if RequestLimit.IsAvailable() {
   RequestLimit.Increase()
   fmt.Println(RequestLimit.ReqCount)
   io.WriteString(w, "Hello world!\n")
 } else {
   fmt.Println("Reach request limiting!")
   io.WriteString(w, "Reach request limit!\n")
 }
}

func main() {
 fmt.Println("Server Started!")
 http.HandleFunc("/", helloHandler)
 http.ListenAndServe(":8000", nil)
}

完整代码 url

使用golang官方包实现httpserver频率限制

使用golang来编写httpserver时,可以使用官方已经有实现好的包:


import(
 "fmt"
 "net"
 "golang.org/x/net/netutil"
)

func main() {
 l, err := net.Listen("tcp", "127.0.0.1:0")
 if err != nil {
   fmt.Fatalf("Listen: %v", err)
 }
 defer l.Close()
 l = LimitListener(l, max)

http.Serve(l, http.HandlerFunc())

//bla bla bla.................
}

源码[url] ( https://github.com/golang/net/blob/master/netutil/listen.go ),基本思路就是为连接数计数,通过make chan来建立一个最大连接数的channel, 每次accept就+1,close时候就-1. 当到达最大连接数时,就等待空闲连接出来之后再accept。


// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package netutil provides network utility functions, complementing the more
// common ones in the net package.
package netutil // import "golang.org/x/net/netutil"

import (
 "net"
 "sync"
)

// LimitListener returns a Listener that accepts at most n simultaneous
// connections from the provided Listener.
func LimitListener(l net.Listener, n int) net.Listener {
 return &limitListener{
   Listener: l,
   sem:   make(chan struct{}, n),
   done:   make(chan struct{}),
 }
}

type limitListener struct {
 net.Listener
 sem    chan struct{}
 closeOnce sync.Once   // ensures the done chan is only closed once
 done   chan struct{} // no values sent; closed when Close is called
}

// acquire acquires the limiting semaphore. Returns true if successfully
// accquired, false if the listener is closed and the semaphore is not
// acquired.
func (l *limitListener) acquire() bool {
 select {
 case <-l.done:
   return false
 case l.sem <- struct{}{}:
   return true
 }
}
func (l *limitListener) release() { <-l.sem }

func (l *limitListener) Accept() (net.Conn, error) {
 //如果sem满了,就会阻塞在这
 acquired := l.acquire()
 // If the semaphore isn't acquired because the listener was closed, expect
 // that this call to accept won't block, but immediately return an error.
 c, err := l.Listener.Accept()
 if err != nil {
   if acquired {
     l.release()
   }
   return nil, err
 }
 return &limitListenerConn{Conn: c, release: l.release}, nil
}

func (l *limitListener) Close() error {
 err := l.Listener.Close()
 l.closeOnce.Do(func() { close(l.done) })
 return err
}

type limitListenerConn struct {
 net.Conn
 releaseOnce sync.Once
 release   func()
}

func (l *limitListenerConn) Close() error {
 err := l.Conn.Close()
 //close时释放占用的sem
 l.releaseOnce.Do(l.release)
 return err
}

使用Token Bucket(令牌桶算法)实现请求限流

在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流!为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常采用的方案之一。

这里为大家推荐一个开源库 https://github.com/didip/tollbooth ,但是,如果您想要一些简单的、轻量级的或者只是想要学习的东西,实现自己的中间件来处理速率限制并不困难。今天我们就来聊聊如何实现自己的一个限流中间件

首先我们需要安装一个提供了 Token bucket (令牌桶算法)的依赖包,上面提到的toolbooth 的实现也是基于它实现的:


$ go get golang.org/x/time/rate

Demo代码的实现


package main

import (
 "net/http"
 "golang.org/x/time/rate"
)

var limiter = rate.NewLimiter(2, 5)
func limit(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
   if limiter.Allow() == false {
     http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
     return
   }
   next.ServeHTTP(w, r)
 })
}

func main() {
 mux := http.NewServeMux()
 mux.HandleFunc("/", okHandler)
 // Wrap the servemux with the limit middleware.
 http.ListenAndServe(":4000", limit(mux))
}

func okHandler(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("OK"))
}

算法描述:用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中(每秒会有r个令牌放入桶中),桶中最多可以存放b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃;

实现


// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rate provides a rate limiter.
package rate

import (
 "fmt"
 "math"
 "sync"
 "time"

"golang.org/x/net/context"
)

// Limit defines the maximum frequency of some events.
// Limit is represented as number of events per second.
// A zero Limit allows no events.
type Limit float64

// Inf is the infinite rate limit; it allows all events (even if burst is zero).
const Inf = Limit(math.MaxFloat64)

// Every converts a minimum time interval between events to a Limit.
func Every(interval time.Duration) Limit {
 if interval <= 0 {
   return Inf
 }
 return 1 / Limit(interval.Seconds())
}

// A Limiter controls how frequently events are allowed to happen.
// It implements a "token bucket" of size b, initially full and refilled
// at rate r tokens per second.
// Informally, in any large enough time interval, the Limiter limits the
// rate to r tokens per second, with a maximum burst size of b events.
// As a special case, if r == Inf (the infinite rate), b is ignored.
// See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets.
//
// The zero value is a valid Limiter, but it will reject all events.
// Use NewLimiter to create non-zero Limiters.
//
// Limiter has three main methods, Allow, Reserve, and Wait.
// Most callers should use Wait.
//
// Each of the three methods consumes a single token.
// They differ in their behavior when no token is available.
// If no token is available, Allow returns false.
// If no token is available, Reserve returns a reservation for a future token
// and the amount of time the caller must wait before using it.
// If no token is available, Wait blocks until one can be obtained
// or its associated context.Context is canceled.
//
// The methods AllowN, ReserveN, and WaitN consume n tokens.
type Limiter struct {
 //maximum token, token num per second
 limit Limit
 //burst field, max token num
 burst int
 mu  sync.Mutex
 //tokens num, change
 tokens float64
 // last is the last time the limiter's tokens field was updated
 last time.Time
 // lastEvent is the latest time of a rate-limited event (past or future)
 lastEvent time.Time
}

// Limit returns the maximum overall event rate.
func (lim *Limiter) Limit() Limit {
 lim.mu.Lock()
 defer lim.mu.Unlock()
 return lim.limit
}

// Burst returns the maximum burst size. Burst is the maximum number of tokens
// that can be consumed in a single call to Allow, Reserve, or Wait, so higher
// Burst values allow more events to happen at once.
// A zero Burst allows no events, unless limit == Inf.
func (lim *Limiter) Burst() int {
 return lim.burst
}

// NewLimiter returns a new Limiter that allows events up to rate r and permits
// bursts of at most b tokens.
func NewLimiter(r Limit, b int) *Limiter {
 return &Limiter{
   limit: r,
   burst: b,
 }
}

// Allow is shorthand for AllowN(time.Now(), 1).
func (lim *Limiter) Allow() bool {
 return lim.AllowN(time.Now(), 1)
}

// AllowN reports whether n events may happen at time now.
// Use this method if you intend to drop / skip events that exceed the rate limit.
// Otherwise use Reserve or Wait.
func (lim *Limiter) AllowN(now time.Time, n int) bool {
 return lim.reserveN(now, n, 0).ok
}

// A Reservation holds information about events that are permitted by a Limiter to happen after a delay.
// A Reservation may be canceled, which may enable the Limiter to permit additional events.
type Reservation struct {
 ok   bool
 lim  *Limiter
 tokens int
 //This is the time to action
 timeToAct time.Time
 // This is the Limit at reservation time, it can change later.
 limit Limit
}

// OK returns whether the limiter can provide the requested number of tokens
// within the maximum wait time. If OK is false, Delay returns InfDuration, and
// Cancel does nothing.
func (r *Reservation) OK() bool {
 return r.ok
}

// Delay is shorthand for DelayFrom(time.Now()).
func (r *Reservation) Delay() time.Duration {
 return r.DelayFrom(time.Now())
}

// InfDuration is the duration returned by Delay when a Reservation is not OK.
const InfDuration = time.Duration(1<<63 - 1)

// DelayFrom returns the duration for which the reservation holder must wait
// before taking the reserved action. Zero duration means act immediately.
// InfDuration means the limiter cannot grant the tokens requested in this
// Reservation within the maximum wait time.
func (r *Reservation) DelayFrom(now time.Time) time.Duration {
 if !r.ok {
   return InfDuration
 }
 delay := r.timeToAct.Sub(now)
 if delay < 0 {
   return 0
 }
 return delay
}

// Cancel is shorthand for CancelAt(time.Now()).
func (r *Reservation) Cancel() {
 r.CancelAt(time.Now())
 return
}

// CancelAt indicates that the reservation holder will not perform the reserved action
// and reverses the effects of this Reservation on the rate limit as much as possible,
// considering that other reservations may have already been made.
func (r *Reservation) CancelAt(now time.Time) {
 if !r.ok {
   return
 }
 r.lim.mu.Lock()
 defer r.lim.mu.Unlock()
 if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) {
   return
 }
 // calculate tokens to restore
 // The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved
 // after r was obtained. These tokens should not be restored.
 restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct))
 if restoreTokens <= 0 {
   return
 }
 // advance time to now
 now, _, tokens := r.lim.advance(now)
 // calculate new number of tokens
 tokens += restoreTokens
 if burst := float64(r.lim.burst); tokens > burst {
   tokens = burst
 }
 // update state
 r.lim.last = now
 r.lim.tokens = tokens
 if r.timeToAct == r.lim.lastEvent {
   prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens)))
   if !prevEvent.Before(now) {
     r.lim.lastEvent = prevEvent
   }
 }
 return
}

// Reserve is shorthand for ReserveN(time.Now(), 1).
func (lim *Limiter) Reserve() *Reservation {
 return lim.ReserveN(time.Now(), 1)
}

// ReserveN returns a Reservation that indicates how long the caller must wait before n events happen.
// The Limiter takes this Reservation into account when allowing future events.
// ReserveN returns false if n exceeds the Limiter's burst size.
// Usage example:
//  r, ok := lim.ReserveN(time.Now(), 1)
//  if !ok {
//   // Not allowed to act! Did you remember to set lim.burst to be > 0 ?
//  }
//  time.Sleep(r.Delay())
//  Act()
// Use this method if you wish to wait and slow down in accordance with the rate limit without dropping events.
// If you need to respect a deadline or cancel the delay, use Wait instead.
// To drop or skip events exceeding rate limit, use Allow instead.
func (lim *Limiter) ReserveN(now time.Time, n int) *Reservation {
 r := lim.reserveN(now, n, InfDuration)
 return &r
}

// Wait is shorthand for WaitN(ctx, 1).
func (lim *Limiter) Wait(ctx context.Context) (err error) {
 return lim.WaitN(ctx, 1)
}

// WaitN blocks until lim permits n events to happen.
// It returns an error if n exceeds the Limiter's burst size, the Context is
// canceled, or the expected wait time exceeds the Context's Deadline.
func (lim *Limiter) WaitN(ctx context.Context, n int) (err error) {
 if n > lim.burst {
   return fmt.Errorf("rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst)
 }
 // Check if ctx is already cancelled
 select {
 case <-ctx.Done():
   return ctx.Err()
 default:
 }
 // Determine wait limit
 now := time.Now()
 waitLimit := InfDuration
 if deadline, ok := ctx.Deadline(); ok {
   waitLimit = deadline.Sub(now)
 }
 // Reserve
 r := lim.reserveN(now, n, waitLimit)
 if !r.ok {
   return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n)
 }
 // Wait
 t := time.NewTimer(r.DelayFrom(now))
 defer t.Stop()
 select {
 case <-t.C:
   // We can proceed.
   return nil
 case <-ctx.Done():
   // Context was canceled before we could proceed. Cancel the
   // reservation, which may permit other events to proceed sooner.
   r.Cancel()
   return ctx.Err()
 }
}

// SetLimit is shorthand for SetLimitAt(time.Now(), newLimit).
func (lim *Limiter) SetLimit(newLimit Limit) {
 lim.SetLimitAt(time.Now(), newLimit)
}

// SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated
// or underutilized by those which reserved (using Reserve or Wait) but did not yet act
// before SetLimitAt was called.
func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) {
 lim.mu.Lock()
 defer lim.mu.Unlock()
 now, _, tokens := lim.advance(now)
 lim.last = now
 lim.tokens = tokens
 lim.limit = newLimit
}

// reserveN is a helper method for AllowN, ReserveN, and WaitN.
// maxFutureReserve specifies the maximum reservation wait duration allowed.
// reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN.
func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation {
 lim.mu.Lock()
 defer lim.mu.Unlock()
 if lim.limit == Inf {
   return Reservation{
     ok:    true,
     lim:    lim,
     tokens:  n,
     timeToAct: now,
   }
 }
 now, last, tokens := lim.advance(now)
 // Calculate the remaining number of tokens resulting from the request.
 tokens -= float64(n)
 // Calculate the wait duration
 var waitDuration time.Duration
 if tokens < 0 {
   waitDuration = lim.limit.durationFromTokens(-tokens)
 }
 // Decide result
 ok := n <= lim.burst && waitDuration <= maxFutureReserve
 // Prepare reservation
 r := Reservation{
   ok:  ok,
   lim:  lim,
   limit: lim.limit,
 }
 if ok {
   r.tokens = n
   r.timeToAct = now.Add(waitDuration)
 }
 // Update state
 if ok {
   lim.last = now
   lim.tokens = tokens
   lim.lastEvent = r.timeToAct
 } else {
   lim.last = last
 }
 return r
}

// advance calculates and returns an updated state for lim resulting from the passage of time.
// lim is not changed.
func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) {
 last := lim.last
 if now.Before(last) {
   last = now
 }
 // Avoid making delta overflow below when last is very old.
 maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens)
 elapsed := now.Sub(last)
 if elapsed > maxElapsed {
   elapsed = maxElapsed
 }
 // Calculate the new number of tokens, due to time that passed.
 delta := lim.limit.tokensFromDuration(elapsed)
 tokens := lim.tokens + delta
 if burst := float64(lim.burst); tokens > burst {
   tokens = burst
 }
 return now, last, tokens
}

// durationFromTokens is a unit conversion function from the number of tokens to the duration
// of time it takes to accumulate them at a rate of limit tokens per second.
func (limit Limit) durationFromTokens(tokens float64) time.Duration {
 seconds := tokens / float64(limit)
 return time.Nanosecond * time.Duration(1e9*seconds)
}

// tokensFromDuration is a unit conversion function from a time duration to the number of tokens
// which could be accumulated during that duration at a rate of limit tokens per second.
func (limit Limit) tokensFromDuration(d time.Duration) float64 {
 return d.Seconds() * float64(limit)
}

虽然在某些情况下使用单个全局速率限制器非常有用,但另一种常见情况是基于IP地址或API密钥等标识符为每个用户实施速率限制器。我们将使用IP地址作为标识符。简单实现代码如下:


package main
import (
 "net/http"
 "sync"
 "time"
 "golang.org/x/time/rate"
)
// Create a custom visitor struct which holds the rate limiter for each
// visitor and the last time that the visitor was seen.
type visitor struct {
 limiter *rate.Limiter
 lastSeen time.Time
}
// Change the the map to hold values of the type visitor.
var visitors = make(map[string]*visitor)
var mtx sync.Mutex
// Run a background goroutine to remove old entries from the visitors map.
func init() {
 go cleanupVisitors()
}
func addVisitor(ip string) *rate.Limiter {
 limiter := rate.NewLimiter(2, 5)
 mtx.Lock()
 // Include the current time when creating a new visitor.
 visitors[ip] = &visitor{limiter, time.Now()}
 mtx.Unlock()
 return limiter
}
func getVisitor(ip string) *rate.Limiter {
 mtx.Lock()
 v, exists := visitors[ip]
 if !exists {
   mtx.Unlock()
   return addVisitor(ip)
 }
 // Update the last seen time for the visitor.
 v.lastSeen = time.Now()
 mtx.Unlock()
 return v.limiter
}
// Every minute check the map for visitors that haven't been seen for
// more than 3 minutes and delete the entries.
func cleanupVisitors() {
 for {
   time.Sleep(time.Minute)
   mtx.Lock()
   for ip, v := range visitors {
     if time.Now().Sub(v.lastSeen) > 3*time.Minute {
       delete(visitors, ip)
     }
   }
   mtx.Unlock()
 }
}
func limit(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
   limiter := getVisitor(r.RemoteAddr)
   if limiter.Allow() == false {
     http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
     return
   }
   next.ServeHTTP(w, r)
 })
}

来源:https://studygolang.com/articles/23725

标签:Golang,请求限流
0
投稿

猜你喜欢

  • python数据结构leetcode338比特位计数算法

    2023-05-06 21:24:33
  • python批量修改图片后缀的方法(png到jpg)

    2022-01-19 19:09:24
  • Python实现的金山快盘的签到程序

    2022-12-05 21:14:51
  • MYSQL大数据导入

    2024-01-18 18:09:36
  • 比较一下看看自己掌握了多少SQL快捷键

    2009-01-04 14:04:00
  • Python实现双轴组合图表柱状图和折线图的具体流程

    2021-08-24 03:23:33
  • Python日志模块logging简介

    2022-07-14 23:55:22
  • Bootstrap4如何定制自己的颜色和风格

    2024-05-13 09:19:09
  • SQL Server 监控磁盘IO错误,msdb.dbo.suspect_pages

    2024-01-22 09:26:44
  • 在Django中实现添加user到group并查看

    2021-12-08 21:47:07
  • 详解python requests中的post请求的参数问题

    2023-09-20 07:50:40
  • python基于watchdog库全自动化监控目录文件

    2022-04-21 19:17:47
  • 从零开始搭建MySQL MMM架构

    2024-01-17 12:40:23
  • Python数据清洗工具之Numpy的基本操作

    2023-08-31 02:39:10
  • Trie树_字典树(字符串排序)简介及实现

    2022-02-22 23:18:23
  • python利用百度云接口实现车牌识别的示例

    2021-06-05 12:52:34
  • 如何在网页上使用VBScript和JScript

    2008-05-05 19:53:00
  • Python容器类型转换的3种方法实例

    2022-06-03 13:32:32
  • css hack简易的“独享”与“交集”

    2008-08-31 20:17:00
  • python实现雪花飘落效果实例讲解

    2022-08-29 07:31:55
  • asp之家 网络编程 m.aspxhome.com