MySQL性能全面优化方法参考,从CPU,文件系统选择到mysql.cnf参数优化

作者:叶金荣 时间:2024-01-22 16:37:20 

本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我们

1、硬件层相关优化

1.1、CPU相关

在服务器的BIOS设置中,可调整下面的几个配置,目的是发挥CPU最大性能,或者避免经典的NUMA问题:

1、选择Performance Per Watt Optimized(DAPC)模式,发挥CPU最大性能,跑DB这种通常需要高运算量的服务就不要考虑节电了;

2、关闭C1E和C States等选项,目的也是为了提升CPU效率;

3、Memory Frequency(内存频率)选择Maximum Performance(最佳性能);

4、内存设置菜单中,启用Node Interleaving,避免NUMA问题;

1.2、磁盘I/O相关

下面几个是按照IOPS性能提升的幅度排序,对于磁盘I/O可优化的一些措施:

1、使用SSD或者PCIe SSD设备,至少获得数百倍甚至万倍的IOPS提升;

2、购置阵列卡同时配备CACHE及BBU模块,可明显提升IOPS(主要是指机械盘,SSD或PCIe SSD除外。同时需要定期检查CACHE及BBU模块的健康状况,确保意外时不至于丢失数据);

3、有阵列卡时,设置阵列写策略为WB,甚至FORCE WB(若有双电保护,或对数据安全性要求不是特别高的话),严禁使用WT策略。并且闭阵列预读策略,基本上是鸡肋,用处不大;

4、尽可能选用RAID-10,而非RAID-5;

5、使用机械盘的话,尽可能选择高转速的,例如选用15KRPM,而不是7.2KRPM的盘,不差几个钱的;

2、系统层相关优化

2.1、文件系统层优化

在文件系统层,下面几个措施可明显提升IOPS性能:

1、使用deadline/noop这两种I/O调度器,千万别用cfq(它不适合跑DB类服务);

2、使用xfs文件系统,千万别用ext3;ext4勉强可用,但业务量很大的话,则一定要用xfs;

3、文件系统mount参数中增加:noatime, nodiratime, nobarrier几个选项(nobarrier是xfs文件系统特有的);

2.2、其他内核参数优化

针对关键内核参数设定合适的值,目的是为了减少swap的倾向,并且让内存和磁盘I/O不会出现大幅波动,导致瞬间波峰负载:

1、将vm.swappiness设置为5-10左右即可,甚至设置为0(RHEL 7以上则慎重设置为0,除非你允许OOM kill发生),以降低使用SWAP的机会;

2、将vm.dirty_background_ratio设置为5-10,将vm.dirty_ratio设置为它的两倍左右,以确保能持续将脏数据刷新到磁盘,避免瞬间I/O写,产生严重等待(和MySQL中的innodb_max_dirty_pages_pct类似);

3、将net.ipv4.tcp_tw_recycle、net.ipv4.tcp_tw_reuse都设置为1,减少TIME_WAIT,提高TCP效率;

4、至于网传的read_ahead_kb、nr_requests这两个参数,我经过测试后,发现对读写混合为主的OLTP环境影响并不大(应该是对读敏感的场景更有效果),不过没准是我测试方法有问题,可自行斟酌是否调整;

3、MySQL层相关优化

3.1、关于版本选择

官方版本我们称为ORACLE MySQL,这个没什么好说的,相信绝大多数人会选择它。

我个人强烈建议选择Percona分支版本,它是一个相对比较成熟的、优秀的MySQL分支版本,在性能提升、可靠性、管理型方面做了不少改善。它和官方ORACLE MySQL版本基本完全兼容,并且性能大约有20%以上的提升,因此我优先推荐它,我自己也从2008年一直以它为主。

另一个重要的分支版本是MariaDB,说MariaDB是分支版本其实已经不太合适了,因为它的目标是取代ORACLE MySQL。它主要在原来的MySQL Server层做了大量的源码级改进,也是一个非常可靠的、优秀的分支版本。但也由此产生了以GTID为代表的和官方版本无法兼容的新特性(MySQL 5.7开始,也支持GTID模式在线动态开启或关闭了),也考虑到绝大多数人还是会跟着官方版本走,因此没优先推荐MariaDB。

3.2、关于最重要的参数选项调整建议

建议调整下面几个关键参数以获得较好的性能(可使用本站提供的my.cnf生成器生成配置文件模板):

1、选择Percona或MariaDB版本的话,强烈建议启用thread pool特性,可使得在高并发的情况下,性能不会发生大幅下降。此外,还有extra_port功能,非常实用, 关键时刻能救命的。还有另外一个重要特色是 QUERY_RESPONSE_TIME 功能,也能使我们对整体的SQL响应时间分布有直观感受;

2、设置default-storage-engine=InnoDB,也就是默认采用InnoDB引擎,强烈建议不要再使用MyISAM引擎了,InnoDB引擎绝对可以满足99%以上的业务场景;

3、调整innodb_buffer_pool_size大小,如果是单实例且绝大多数是InnoDB引擎表的话,可考虑设置为物理内存的50% ~ 70%左右;

4、根据实际需要设置innodb_flush_log_at_trx_commit、sync_binlog的值。如果要求数据不能丢失,那么两个都设为1。如果允许丢失一点数据,则可分别设为2和10。而如果完全不用care数据是否丢失的话(例如在slave上,反正大不了重做一次),则可都设为0。这三种设置值导致数据库的性能受到影响程度分别是:高、中、低,也就是第一个会另数据库最慢,最后一个则相反;

5、设置innodb_file_per_table = 1,使用独立表空间,我实在是想不出来用共享表空间有什么好处了;

6、设置innodb_data_file_path = ibdata1:1G:autoextend,千万不要用默认的10M,否则在有高并发事务时,会受到不小的影响;

7、设置innodb_log_file_size=256M,设置innodb_log_files_in_group=2,基本可满足90%以上的场景;

8、设置long_query_time = 1,而在5.5版本以上,已经可以设置为小于1了,建议设置为0.05(50毫秒),记录那些执行较慢的SQL,用于后续的分析排查;

9、根据业务实际需要,适当调整max_connection(最大连接数)、max_connection_error(最大错误数,建议设置为10万以上,而open_files_limit、innodb_open_files、table_open_cache、table_definition_cache这几个参数则可设为约10倍于max_connection的大小;

10、常见的误区是把tmp_table_size和max_heap_table_size设置的比较大,曾经见过设置为1G的,这2个选项是每个连接会话都会分配的,因此不要设置过大,否则容易导致OOM发生;其他的一些连接会话级选项例如:sort_buffer_size、join_buffer_size、read_buffer_size、read_rnd_buffer_size等,也需要注意不能设置过大;

11、由于已经建议不再使用MyISAM引擎了,因此可以把key_buffer_size设置为32M左右,并且强烈建议关闭query cache功能;

3.3、关于Schema设计规范及SQL使用建议

下面列举了几个常见有助于提升MySQL效率的Schema设计规范及SQL使用建议:

1、所有的InnoDB表都设计一个无业务用途的自增列做主键,对于绝大多数场景都是如此,真正纯只读用InnoDB表的并不多,真如此的话还不如用TokuDB来得划算;

2、字段长度满足需求前提下,尽可能选择长度小的。此外,字段属性尽量都加上NOT NULL约束,可一定程度提高性能;

3、尽可能不使用TEXT/BLOB类型,确实需要的话,建议拆分到子表中,不要和主表放在一起,避免SELECT * 的时候读性能太差。

4、读取数据时,只选取所需要的列,不要每次都SELECT *,避免产生严重的随机读问题,尤其是读到一些TEXT/BLOB列;

5、对一个VARCHAR(N)列创建索引时,通常取其50%(甚至更小)左右长度创建前缀索引就足以满足80%以上的查询需求了,没必要创建整列的全长度索引;

6、通常情况下,子查询的性能比较差,建议改造成JOIN写法;

7、多表联接查询时,关联字段类型尽量一致,并且都要有索引;

8、多表连接查询时,把结果集小的表(注意,这里是指过滤后的结果集,不一定是全表数据量小的)作为驱动表;

9、多表联接并且有排序时,排序字段必须是驱动表里的,否则排序列无法用到索引;

10、多用复合索引,少用多个独立索引,尤其是一些基数(Cardinality)太小(比如说,该列的唯一值总数少于255)的列就不要创建独立索引了;

11、类似分页功能的SQL,建议先用主键关联,然后返回结果集,效率会高很多;

3.4、其他建议

关于MySQL的管理维护的其他建议有:

1、通常地,单表物理大小不超过10GB,单表行数不超过1亿条,行平均长度不超过8KB,如果机器性能足够,这些数据量MySQL是完全能处理的过来的,不用担心性能问题,这么建议主要是考虑ONLINE DDL的代价较高;

2、不用太担心mysqld进程占用太多内存,只要不发生OOM kill和用到大量的SWAP都还好;

3、在以往,单机上跑多实例的目的是能最大化利用计算资源,如果单实例已经能耗尽大部分计算资源的话,就没必要再跑多实例了;

4、定期使用pt-duplicate-key-checker检查并删除重复的索引。定期使用pt-index-usage工具检查并删除使用频率很低的索引;

5、定期采集slow query log,用pt-query-digest工具进行分析,可结合Anemometer系统进行slow query管理以便分析slow query并进行后续优化工作;

6、可使用pt-kill杀掉超长时间的SQL请求,Percona版本中有个选项 innodb_kill_idle_transaction 也可实现该功能;

7、使用pt-online-schema-change来完成大表的ONLINE DDL需求;

8、定期使用pt-table-checksum、pt-table-sync来检查并修复mysql主从复制的数据差异;

这次的优化参考,大部分情况下都介绍了适用的场景,如果你的应用场景和本文描述的不太一样,那么建议根据实际情况进行调整,而不是生搬硬套。

来源:http://imysql.com/2015/05/24/mysql-optimization-reference-1.shtml

标签:MySQL性能,mysql.cnf参数
0
投稿

猜你喜欢

  • 在Python程序中实现分布式进程的教程

    2021-12-19 23:18:15
  • Golang连接并操作PostgreSQL数据库基本操作

    2024-01-21 07:41:49
  • python web框架中实现原生分页

    2021-05-15 12:25:42
  • 将数据集制作成VOC数据集格式的实例

    2023-05-16 06:00:15
  • 解决SqlServer 各版本 sa帐户不能登录问题

    2024-01-19 11:36:02
  • python批量提取图片信息并保存的实现

    2021-10-08 05:21:14
  • python获取本机mac地址和ip地址的方法

    2023-02-25 00:38:16
  • 详解用Python处理HTML转义字符的5种方式

    2021-01-27 20:53:17
  • Go中recover与panic区别详解

    2024-05-10 13:58:22
  • pandas 缺失值与空值处理的实现方法

    2023-08-02 03:21:25
  • 成为一个顶级设计师的第一准则

    2008-04-18 10:29:00
  • 分享一个简单的python读写文件脚本

    2022-11-21 20:03:00
  • 认识那些被忽略的SQL Server注入技巧

    2009-01-20 13:15:00
  • python paramiko实现ssh远程访问的方法

    2021-07-17 23:03:55
  • 再说淘宝的评价和信用机制

    2008-07-10 12:43:00
  • 通过5个知识点轻松搞定Python的作用域

    2021-10-02 03:51:23
  • 解决python 使用openpyxl读写大文件的坑

    2021-06-20 17:03:24
  • MHTML在ie7/vista bug 解决方案

    2010-02-01 12:42:00
  • 使用pandas库对csv文件进行筛选保存

    2022-12-25 04:55:10
  • Perl合并文本的一段实例代码

    2023-10-31 05:05:23
  • asp之家 网络编程 m.aspxhome.com