千万不要被阶乘吓倒

时间:2021-10-06 22:35:45 

阶乘(Factorial)是个很有意思的函数,但是不少人都比较怕它,我们来看看两个与阶乘相关的问题:
1、 给定一个整数N,那么N的阶乘N!末尾有多少个0呢?例如:N=10,N!=3 628 800,N!的末尾有两个0。
2、求N!的二进制表示中最低位1的位置。
有些人碰到这样的题目会想:是不是要完整计算出N!的值?如果溢出怎么办?事实上,如果我们从"哪些数相乘能得到10"这个角度来考虑,问题就变得简单了。
首先考虑,如果N!= K×10^M,且K不能被10整除,那么N!末尾有M个0。再考虑对N!进行质因数分解,N!=(2^x)×(3^y)×(5^z)…,由于10 = 2×5,所以M只跟X和Z相关,每一对2和5相乘可以得到一个10,于是M = min(X, Z)。不难看出X大于等于Z,因为能被2整除的数出现的频率比能被5整除的数高得多,所以把公式简化为M = Z。
根据上面的分析,只要计算出Z的值,就可以得到N!末尾0的个数。
【问题1的解法一】
要计算Z,最直接的方法,就是计算i(i =1, 2, …, N)的因式分解中5的指数,然后求和:


ret = 0;
for(i = 1; i <= N; i++)
{
 j = i;
 while(j % 5 ==0)
 {
  ret++;     //统计N的阶乘中那些能够被5整除的因子的个数
  j /= 5;
 }
}


【问题1的解法二】
公式:Z = [N/5] +[N/5^2] +[N/5^3] + …(不用担心这会是一个无穷的运算,因为总存在一个K,使得5^K > N,[N/5^K]=0。)
公式中,[N/5]表示不大于N的数中5的倍数贡献一个5,[N/5^2]表示不大于N的数中5^2的倍数再贡献一个5,……代码如下:


ret = 0;
while(N)
{
 ret += N / 5;
 N /= 5;
}


问题2要求的是N!的二进制表示中最低位1的位置。给定一个整数N,求N!二进制表示的最低位1在第几位?例如:给定N = 3,N!= 6,那么N!的二进制表示(1 010)的最低位1在第二位。
为了得到更好的解法,首先要对题目进行一下转化。
首先来看一下一个二进制数除以2的计算过程和结果是怎样的。
把一个二进制数除以2,实际过程如下:
判断最后一个二进制位是否为0,若为0,则将此二进制数右移一位,即为商值(为什么);反之,若为1,则说明这个二进制数是奇数,无法被2整除(这又是为什么)。
所以,这个问题实际上等同于求N!含有质因数2的个数+1。即答案等于N!含有质因数2的个数加1。 实际上N!都为偶数,因为质因数里面都有一个2,除了1以外,因为1的阶乘是1,是个奇数,其他数的阶乘都是偶数。。
【问题2的解法一】
由于N! 中含有质因数2的个数,等于 N/2 + N/4 + N/8 + N/16 + …[1],
根据上述分析,得到具体算法,如下所示:


/*
可以先求出N!中2的个数(因为每存在一个2,则在数的
最低位多1个0)。因此求1的最低位的位置即为N!中2的个数+1;
*/
int lowestOnePos(int n)
{
&nbsp;&nbsp; &nbsp;int ret = 0;&nbsp;&nbsp;&nbsp;&nbsp; //统计n!中含有质因数2的个数
&nbsp;&nbsp; &nbsp;while(n)
&nbsp;&nbsp; &nbsp;{
&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;n >>= 1;
&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;ret += n;
&nbsp;&nbsp; &nbsp;}
&nbsp;&nbsp; &nbsp;return ret+1;
}


【问题2的解法二】
N!含有质因数2的个数,还等于N减去N的二进制表示中1的数目。我们还可以通过这个规律来求解。
下面对这个规律进行举例说明,假设 N = 11011,那么N!中含有质因数2的个数为 N/2 + N/4 + N/8 + N/16 + …


即: 1101 + 110 + 11 + 1
=(1000 + 100 + 1)
+(100 + 10)
+(10 + 1)
+ 1
=(1000 + 100+ 10 + 1)+(100 + 10 + 1)+ 1
= 1111 + 111 + 1
=(10000 -1)+(1000 - 1)+(10-1)+(1-1)
= 11011-N二进制表示中1的个数


小结
任意一个长度为m的二进制数N可以表示为N = b[1] + b[2] * 2 + b[3] * 22 + … + b[m] * 2(m-1),其中b [ i ]表示此二进制数第i位上的数字(1或0)。所以,若最低位b[1]为1,则说明N为奇数;反之为偶数,将其除以2,即等于将整个二进制数向低位移一位。
相关题目
给定整数n,判断它是否为2的方幂(解答提示:n>0&&((n&(n-1))==0))。
--------------------------------------------------------------------------------
[1] 这个规律请读者自己证明(提示N/k,等于1, 2, 3, …, N中能被k整除的数的个数)。

标签:阶乘
0
投稿

猜你喜欢

  • 找出链表倒数第n个节点元素的二个方法

    2022-07-20 13:35:40
  • C#中this指针的用法示例

    2021-07-21 14:12:24
  • Android实现探探图片滑动效果

    2022-11-14 17:09:19
  • Android getevent用法实例详解

    2021-06-27 10:03:35
  • 使用Springboot自定义注解,支持SPEL表达式

    2023-11-20 01:18:58
  • JAVA中实现原生的 socket 通信机制原理

    2021-08-08 03:06:01
  • C# Stream 和 byte[] 之间的转换

    2023-06-24 23:14:52
  • springboot+zookeeper实现分布式锁的示例代码

    2022-02-05 08:48:48
  • C#中Dispose和Finalize方法使用介绍

    2022-09-10 16:05:21
  • Java实现添加条形码到PDF表格的方法详解

    2023-04-26 12:37:25
  • Java Springboot如何基于图片生成下载链接

    2023-05-19 19:57:32
  • Android开发简易音乐播放器

    2023-12-26 01:07:03
  • Java设计模式之备忘录模式

    2023-08-24 06:17:05
  • Java字符串编码知识点详解介绍

    2023-10-16 09:41:04
  • Android中Splash应用启动白屏问题的解决方法

    2022-08-25 14:24:33
  • Java多线程 Guarded Suspension设计模式

    2023-03-12 01:52:00
  • Java中的zookeeper常用命令详解

    2022-12-07 05:46:35
  • maven打包时候修改包名称带上git版本号和打包时间方式

    2022-03-09 20:51:39
  • 一篇文章带你入门Java之编程规范

    2022-02-25 16:18:40
  • MyBatis常用的jdbcType数据类型

    2023-09-18 19:09:35
  • asp之家 软件编程 m.aspxhome.com