Java中的显示锁ReentrantLock使用与原理详解

作者:爬蜥 时间:2021-11-14 07:04:00 

考虑一个场景,轮流打印0-100以内的技术和偶数。通过使用 synchronize 的 wait,notify机制就可以实现,核心思路如下:
使用两个线程,一个打印奇数,一个打印偶数。这两个线程会共享一个数据,数据每次自增,当打印奇数的线程发现当前要打印的数字不是奇数时,执行等待,否则打印奇数,并将数字自增1,对于打印偶数的线程也是如此


//打印奇数的线程
private static class OldRunner implements Runnable{
 private MyNumber n;

public OldRunner(MyNumber n) {
   this.n = n;
 }

public void run() {
   while (true){
     n.waitToOld(); //等待数据变成奇数
     System.out.println("old:" + n.getVal());
     n.increase();
     if (n.getVal()>98){
       break;
     }
   }
 }
}
//打印偶数的线程
private static class EvenRunner implements Runnable{
 private MyNumber n;

public EvenRunner(MyNumber n) {
   this.n = n;
 }

public void run() {
   while (true){
     n.waitToEven();      //等待数据变成偶数
     System.out.println("even:"+n.getVal());
     n.increase();
     if (n.getVal()>99){
       break;
     }
   }
 }
}

共享的数据如下


private static class MyNumber{
 private int val;

public MyNumber(int val) {
   this.val = val;
 }

public int getVal() {
   return val;
 }
 public synchronized void increase(){
   val++;
   notify(); //数据变了,唤醒另外的线程
 }
 public synchronized void waitToOld(){
   while ((val % 2)==0){
     try {
       System.out.println("i am "+Thread.currentThread().getName()+" ,but now is even:"+val+",so wait");
       wait(); //只要是偶数,一直等待
     } catch (InterruptedException e) {
       e.printStackTrace();
     }
   }
 }
 public synchronized void waitToEven(){
   while ((val % 2)!=0){
     try {
       System.out.println("i am "+Thread.currentThread().getName()+" ,but now old:"+val+",so wait");
       wait(); //只要是奇数,一直等待
     } catch (InterruptedException e) {
       e.printStackTrace();
     }
   }
 }
}

运行代码如下


MyNumber n = new MyNumber(0);
Thread old=new Thread(new OldRunner(n),"old-thread");
Thread even = new Thread(new EvenRunner(n),"even-thread");
old.start();
even.start();

运行结果如下

i am old-thread ,but now is even:0,so wait
even:0
i am even-thread ,but now old:1,so wait
old:1
i am old-thread ,but now is even:2,so wait
even:2
i am even-thread ,but now old:3,so wait
old:3
i am old-thread ,but now is even:4,so wait
even:4
i am even-thread ,but now old:5,so wait
old:5
i am old-thread ,but now is even:6,so wait
even:6
i am even-thread ,but now old:7,so wait
old:7
i am old-thread ,but now is even:8,so wait
even:8

上述方法使用的是 synchronize的 wait notify机制,同样可以使用显示锁来实现,两个打印的线程还是同一个线程,只是使用的是显示锁来控制等待事件


private static class MyNumber{
 private Lock lock = new ReentrantLock();
 private Condition condition = lock.newCondition();
 private int val;

public MyNumber(int val) {
   this.val = val;
 }

public int getVal() {
   return val;
 }
 public void increase(){
   lock.lock();
   try {
     val++;
     condition.signalAll(); //通知线程
   }finally {
     lock.unlock();
   }

}
 public void waitToOld(){
   lock.lock();
   try{
     while ((val % 2)==0){
       try {
         System.out.println("i am should print old ,but now is even:"+val+",so wait");
         condition.await();
       } catch (InterruptedException e) {
         e.printStackTrace();
       }
     }
   }finally {
     lock.unlock();
   }
 }
 public void waitToEven(){
   lock.lock(); //显示的锁定
   try{
     while ((val % 2)!=0){
       try {
         System.out.println("i am should print even ,but now old:"+val+",so wait");
         condition.await();//执行等待
       } catch (InterruptedException e) {
         e.printStackTrace();
       }
     }
   }finally {
     lock.unlock(); //显示的释放
   }

}
}

同样可以得到上述的效果

显示锁的功能

显示锁在java中通过接口Lock提供如下功能

Java中的显示锁ReentrantLock使用与原理详解

lock: 线程无法获取锁会进入休眠状态,直到获取成功

  • lockInterruptibly: 如果获取成功,立即返回,否则一直休眠到线程被中断或者是获取成功

  • tryLock:不会造成线程休眠,方法执行会立即返回,获取到了锁,返回true,否则返回false

  • tryLock(long time, TimeUnit unit) throws InterruptedException : 在等待时间内没有发生过中断,并且没有获取锁,就一直等待,当获取到了,或者是线程中断了,或者是超时时间到了这三者发生一个就返回,并记录是否有获取到锁

  • unlock:释放锁

  • newCondition:每次调用创建一个锁的等待条件,也就是说一个锁可以拥有多个条件

Condition的功能

接口Condition把Object的监视器方法wait和notify分离出来,使得一个对象可以有多个等待的条件来执行等待,配合Lock的newCondition来实现。

  • await:使当前线程休眠,不可调度。这四种情况下会恢复 1:其它线程调用了signal,当前线程恰好被选中了恢复执行;2: 其它线程调用了signalAll;3:其它线程中断了当前线程 4:spurious wakeup (假醒)。无论什么情况,在await方法返回之前,当前线程必须重新获取锁

  • awaitUninterruptibly:使当前线程休眠,不可调度。这三种情况下会恢复 1:其它线程调用了signal,当前线程恰好被选中了恢复执行;2: 其它线程调用了signalAll;3:spurious wakeup (假醒)。

  • awaitNanos:使当前线程休眠,不可调度。这四种情况下会恢复 1:其它线程调用了signal,当前线程恰好被选中了恢复执行;2: 其它线程调用了signalAll;3:其它线程中断了当前线程 4:spurious wakeup (假醒)。5:超时了

  • await(long time, TimeUnit unit) :与awaitNanos类似,只是换了个时间单位

  • awaitUntil(Date deadline):与awaitNanos相似,只是指定日期之后返回,而不是指定的一段时间

  • signal:唤醒一个等待的线程

  • signalAll:唤醒所有等待的线程

ReentrantLock

从源码中可以看到,ReentrantLock的所有实现全都依赖于内部类Sync和ConditionObject。

Sync本身是个抽象类,负责手动lock和unlock,ConditionObject则实现在父类AbstractOwnableSynchronizer中,负责await与signal

Sync的继承结构如下

Java中的显示锁ReentrantLock使用与原理详解

Sync的两个实现类,公平锁和非公平锁

公平的锁会把权限给等待时间最长的线程来执行,非公平则获取执行权限的线程与线程本身的等待时间无关

默认初始化ReentrantLock使用的是非公平锁,当然可以通过指定参数来使用公平锁


public ReentrantLock() {
 sync = new NonfairSync();
}

当执行获取锁时,实际就是去执行 Sync 的lock操作:


public void lock() {
 sync.lock();
}

对应在不同的锁机制中有不同的实现

1、公平锁实现


final void lock() {
 acquire(1);
}

2、非公平锁实现


final void lock() {
 if (compareAndSetState(0, 1)) //先看当前锁是不是已经被占有了,如果没有,就直接将当前线程设置为占有的线程
   setExclusiveOwnerThread(Thread.currentThread());
 else    
   acquire(1); //锁已经被占有的情况下,尝试获取
}

二者都调用父类AbstractQueuedSynchronizer的方法


public final void acquire(int arg) {
 if (!tryAcquire(arg) &&
   acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) //一旦抢失败,就会进入队列,进入队列后则是依据FIFO的原则来执行唤醒
   selfInterrupt();
}

当执行unlock时,对应方法在父类AbstractQueuedSynchronizer中


public final boolean release(int arg) {
 if (tryRelease(arg)) {
   Node h = head;
   if (h != null && h.waitStatus != 0)
     unparkSuccessor(h);
   return true;
 }
 return false;
}

公平锁和非公平锁则分别对获取锁的方式tryAcquire 做了实现,而tryRelease的实现机制则都是一样的

公平锁实现tryAcquire

源码如下


protected final boolean tryAcquire(int acquires) {
 final Thread current = Thread.currentThread();
 int c = getState(); //获取当前的同步状态
 if (c == 0) {
   //等于0 表示没有被其它线程获取过锁
   if (!hasQueuedPredecessors() &&
     compareAndSetState(0, acquires)) {
     //hasQueuedPredecessors 判断在当前线程的前面是不是还有其它的线程,如果有,也就是锁sync上有一个等待的线程,那么它不能获取锁,这意味着,只有等待时间最长的线程能够获取锁,这就是是公平性的体现
     //compareAndSetState 看当前在内存中存储的值是不是真的是0,如果是0就设置成accquires的取值。对于JAVA,这种需要直接操作内存的操作是通过unsafe来完成,具体的实现机制则依赖于操作系统。
     //存储获取当前锁的线程
     setExclusiveOwnerThread(current);
     return true;
   }
 }
 else if (current == getExclusiveOwnerThread()) {
   //判断是不是当前线程获取的锁
   int nextc = c + acquires;
   if (nextc < 0)//一个线程能够获取同一个锁的次数是有限制的,就是int的最大值
     throw new Error("Maximum lock count exceeded");
   setState(nextc); //在当前的基础上再增加一次锁被持有的次数
   return true;
 }
 //锁被其它线程持有,获取失败
 return false;
}

非公平锁实现tryAcquire

获取的关键实现为nonfairTryAcquire,源码如下


final boolean nonfairTryAcquire(int acquires) {
 final Thread current = Thread.currentThread();
 int c = getState();
 if (c == 0) {
   //锁没有被持有
   //可以看到这里会无视sync queue中是否有其它线程,只要执行到了当前线程,就会去获取锁
   if (compareAndSetState(0, acquires)) {
     setExclusiveOwnerThread(current); //在判断一次是不是锁没有被占有,没有就去标记当前线程拥有这个锁了
     return true;
   }
 }
 else if (current == getExclusiveOwnerThread()) {
   int nextc = c + acquires;
   if (nextc < 0) // overflow      
     throw new Error("Maximum lock count exceeded");
   setState(nextc);//如果当前线程已经占有过,增加占有的次数
   return true;
 }
 return false;
}

释放锁的机制


protected final boolean tryRelease(int releases) {
 int c = getState() - releases;
 if (Thread.currentThread() != getExclusiveOwnerThread()) //只能是线程拥有这释放
   throw new IllegalMonitorStateException();
 boolean free = false;
 if (c == 0) {
   //当占有次数为0的时候,就认为所有的锁都释放完毕了
   free = true;
   setExclusiveOwnerThread(null);
 }
 setState(c); //更新锁的状态
 return free;
}

从源码的实现可以看到

ReentrantLock获取锁时,在锁已经被占有的情况下,如果占有锁的线程是当前线程,那么允许重入,即再次占有,如果由其它线程占有,则获取失败,由此可见,ReetrantLock本身对锁的持有是可重入的,同时是线程独占的

公平与非公平就体现在,当执行的线程去获取锁的时候,公平的会去看是否有等待时间比它更长的,而非公平的就优先直接去占有锁

ReentrantLock的tryLock()与tryLock(long timeout, TimeUnit unit):


public boolean tryLock() {
//本质上就是执行一次非公平的抢锁
return sync.nonfairTryAcquire(1);
}

有时限的tryLock核心代码是 sync.tryAcquireNanos(1, unit.toNanos(timeout));,由于有超时时间,它会直接放到等待队列中,他与后面要讲的AQS的lock原理中acquireQueued的区别在于park的时间是有限的,详见源码 AbstractQueuedSynchronizer.doAcquireNanos

为什么需要显示锁

内置锁功能上有一定的局限性,它无法响应中断,不能设置等待的时间

来源:https://segmentfault.com/a/1190000017134892

标签:Java,显示锁,ReentrantLock
0
投稿

猜你喜欢

  • SpringMVC+Mybatis实现的Mysql分页数据查询的示例

    2023-11-24 20:53:33
  • 详解Java内存泄露的示例代码

    2023-06-08 03:34:51
  • SpringBoot 返回Json实体类属性大小写的解决

    2023-08-05 12:30:49
  • java同步之如何写一个锁Lock

    2023-04-23 08:10:54
  • java控制台输出图书馆管理系统

    2022-06-13 01:29:29
  • 一文带你搞懂Redis分布式锁

    2021-09-26 12:56:14
  • java IO流 之 输入流 InputString()的使用

    2023-08-22 07:44:31
  • Java+MySQL实现学生信息管理系统源码

    2023-11-28 04:29:31
  • Java多线程的临界资源问题解决方案

    2021-12-29 07:44:35
  • Java算法之递归算法计算阶乘

    2021-06-30 14:10:56
  • Java编程实现帕斯卡三角形代码示例

    2023-11-02 08:08:24
  • Spring Boot Reactor 整合 Resilience4j详析

    2021-08-08 10:30:02
  • Java 处理超大数类型之BigInteger案例详解

    2021-06-20 15:36:38
  • Spring的异常重试框架Spring Retry简单配置操作

    2023-11-25 18:27:35
  • Mybatis-Plus之ID自动增长的设置实现

    2022-10-27 00:09:47
  • IP查询系统的异步回调案例

    2023-11-10 18:22:24
  • Java 继承与多态的深入理解

    2023-10-05 04:25:41
  • java 2d画图示例分享(用java画图)

    2023-07-25 22:03:52
  • Struts2配置文件中使用通配符的方法(三种形式)

    2022-08-21 01:53:40
  • 详解Java实现缓存(LRU,FIFO)

    2022-04-24 13:35:26
  • asp之家 软件编程 m.aspxhome.com