Java之NIO基本简介

作者:爱上口袋的天空 时间:2021-12-20 22:15:44 

一、NIO基本简介

NIO (New lO)也有人称之为java non-blocking lO是从Java 1.4版本开始引入的一个新的IO API,可以替代标准的Java lO API。NIO与原来的IO有同样的作用和目的,但是使用的方式完全不同,NIO支持面向缓冲区的、基于通道的IO操作。NIO将以更加高效的方式进行文件的读写操作。NIO可以理解为非阻塞IO,传统的IO的read和write只能阻塞执行,线程在读写IO期间不能干其他事情,比如调用socket.read()时,如果服务器一直没有数据传输过来,线程就一直阻塞,而NIO中可以配置socket为非阻塞模式。

NIO相关类都被放在java.nio包及子包下,并且对原java.io包中的很多类进行改写。NIO有三大核心部分:Channel(通道),Buffer(缓冲区), Selector(选择器)Java NlO的非阻塞模式,使一个线程从某通道发送请求或者读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取,而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。非阻塞写也是如此,一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。通俗理解:NIO是可以做到用一个线程来处理多个操作的。假设有1000个请求过来,根据实际情况,可以分配20或者80个线程来处理。不像之前的阻塞IO那样,非得分配1000个。

二、NIO 与 BIO的比较

Java之NIO基本简介

NIO可以先将数据写入到缓冲区,然后再有缓冲区写入通道,因此可以做到同步非阻塞

BIO则是面向的流,读写数据都是单向的。因此是同步阻塞。

 三、NIO 三大核心原理示意图

NIO有三大核心部分: Channel(通道),Buffer(缓冲区),Selector(选择器)

Buffer(缓冲区)

        缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存。相比较直接对数组的操作,Buffer APl更加容易操作和管理。

Channel(通道)

        Java NIO的通道类似流,但又有些不同:既可以从通道中读取数据,又可以写数据到通道。但流的(input或output)读写通常是单向的。通道可以非阻塞读取和写入通道,通道可以支持读取或写入缓冲区,也支持异步地读写。

Selector(选择器)

        Selector是一个ava NIO组件,可以能够检查一个或多个NIO通道,并确定哪些通道已经准备好进行读取或写入。这样,一个单独的线程可以管理多个channel,从而管理多个网络连接,提高效率

Java之NIO基本简介

  • 每个channel都会对应一个 Buffer

  • 一个线程对应Selector ,一个Selector对应多个channel(连接)程序

  • 切换到哪个channel是由事件决定的

  • Selector 会根据不同的事件,在各个通道上切换

  • Buffer 就是一个内存块,底层是一个数组

  • 数据的读取写入是通过 Buffer完成的,BlO中要么是输入流,或者是输出流,不能双向,但是NIO的Buffer是可以读也可以写。

  • Java NIO系统的核心在于:通道(Channel)和缓冲区(Buffer)。通道表示打开到lO设备(例如:文件、套接字)的连接。若需要使用NIO系统,需要获取用于连接IO设备的通道以及用于容纳数据的缓冲区。然后操作缓冲区,对数据进行处理。简而言之,Channel负责传输,Buffer负责存取数据

四、NIO核心一:缓存区 (Buffer)

缓冲区(Buffer)一个用于特定基本数据类型的容器。由 java.nio 包定义的,所有缓冲区 都是 Buffer 抽象类的子类.。Java NIO 中的 Buffer 主要用于与 NIO 通道进行 交互数据是从通道读入缓冲区,从缓冲区写入通道中的

Java之NIO基本简介

Buffer 类及其子类:

Buffer就像一个数组,可以保存多个相同类型的数据。根据 数据类型不同 ,有以下 Buffer 常用子类:  

  • ByteBuffer 

  • CharBuffer 

  • ShortBuffer 

  • IntBuffer 

  • LongBuffer 

  • FloatBuffer 

  • DoubleBuffer 

上述 Buffer 类他们都采用相似的方法进行管理数据,只是各自 管理的数据类型不同而已。都是通过如下方法获取一个 Buffer 对象:

static XxxBuffer allocate(int capacity) : 创建一个容量为capacity 的 XxxBuffer 对象

缓冲区的基本属性 Buffer 中的重要概念:

容量 (capacity) :作为一个内存块,Buffer具有一定的固定大小, 也称为"容量",缓冲区容量不能为负,并且创建后不能更改。

限制 (limit):表示缓冲区中可以操作数据的大小 (limit 后数据不能进行读写)。缓冲区的限制不能 为负,并且不能大于其容量。 写入模式,限制等于 buffer的容量。读取模式下,limit等于写入的数据量。

位置 (position):下一个要读取或写入的数据的索引。 缓冲区的位置不能为 负,并且不能大于其限制

标记 (mark)与重置 (reset):标记是一个索引, 通过 Buffer 中的 mark() 方法 指定 Buffer 中一个 特定的 position,之后可以通过调用 reset() 方法恢 复到这 个 position.

标记、位置、限制、容量遵守以下不变式: 0 <= mark <= position <= limit <= capacity

Java之NIO基本简介

 Buffer常见方法:

  • Buffer clear() :清空缓冲区并返回对缓冲区的引用

  • Buffer flip() :为 将缓冲区的界限设置为当前位置, 并将当前位置重置为 0

  • int capacity() :返回 Buffer 的 capacity 大小

  • boolean hasRemaining(): 判断缓冲区中是否还有元素

  • int limit() :返回 Buffer 的界限(limit) 的位置

  • Buffer limit(int n) 将设置缓冲区界限为 n, 并返回一个具有新 limit 的缓冲区对象

  • Buffer mark(): 对缓冲区设置标记

  • int position() :返回缓冲区的当前位置 position

  • Buffer position(int n) :将设置缓冲区的当前位置为 n, 并返回修改后的 Buffer 对象

  • int remaining() :返回 position 和 limit 之间的元素个数

  • Buffer reset() :将位置 position 转到以前设置的mark 所在的位置

  • Buffer rewind() :将位置设为为 0, 取消设置的 mark

缓冲区的数据操作 Buffer 所有子类提供了两个用于数据操作的方法:

  • get() :读取单个字节

  • get(byte[] dst):批量读取多个字节到 dst 中

  • get(int index):读取指定索引位置的字节(不会移动 position)放到入数据到Buffer中

  • put(byte b):将给定单个字节写入缓冲区的当前位置

  • put(byte[] src):将 src 中的字节写入缓冲区的当前位置

  • put(int index, byte b):将指定字节写入缓冲区的索引 位置(不会移动 position)

使用Buffer读写数据一般遵循以下四个步骤:

  • 写入数据到Buffer

  • 调用flip()方法,转换为读取模式

  • 从Buffer中读取数据

  • 调用buffer.clear()方法或者buffer.compact()方 法清除缓冲区

package com.kgf.kgfjavalearning2021.io.nio;
import org.junit.Test;
import java.nio.ByteBuffer;
/***
* Buffer测试类
*/
public class TestBuffer {
  @Test
  public void test1(){
     //1. 分配一个指定大小的缓冲区
     ByteBuffer buf = ByteBuffer.allocate(1024);
     System.out.println("-----------------allocate()----------------");
     System.out.println(buf.position());// 0: 表示当前的位置为0
     System.out.println(buf.limit());// 1024: 表示界限为1024,前1024个位置是允许我们读写的
     System.out.println(buf.capacity());//1024:表示容量大小为1024
     //2. 利用 put() 存入数据到缓冲区中
     System.out.println("-----------------put()----------------");
     String str = "itheima";
     buf.put(str.getBytes());
     System.out.println(buf.position());// 7表示下一个可以写入的位置是7,因为我们写入的字节是7个,从0开始已经写了7个,位置为8的position为7
     System.out.println(buf.limit());// 1024:表示界限为1024,前1024个位置是允许我们读写的
     System.out.println(buf.capacity());//1024:表示容量大小为1024
     //3. 切换读取数据模式
     System.out.println("-----------------flip()----------------");
     buf.flip();
     System.out.println(buf.position());// 0: 读取的起始位置为0
     System.out.println(buf.limit());// 7: 表示界限为7,前7个位置有数据可以读取
     System.out.println(buf.capacity());// 1024:表示容量大小为1024
     //4. 利用 get() 读取缓冲区中的数据
     System.out.println("-----------------get()----------------");
     byte[] dst = new byte[buf.limit()];//创建一个界限为limit大小的字节数组
     buf.get(dst);//批量将limit大小的字节写入到dst字节数组中
     System.out.println(new String(dst, 0, dst.length));//结果为itheima
     System.out.println(buf.position());//7: 读取的位置变为7,因为前面的7个字节数据已经全部读取出去,下一个可读取的位置为7,从0开始的
     System.out.println(buf.limit());//7: 可读取的界限大小为7
     System.out.println(buf.capacity());// 1024: 表示容量大小为1024
     //5. rewind() : 可重复读
     System.out.println("-----------------rewind()----------------");
     buf.rewind();// 将位置设为为 0,从头开始读取
     System.out.println(buf.position());// 0
     System.out.println(buf.limit());// 7
     System.out.println(buf.capacity());// 1024
     //6. clear() : 清空缓冲区. 但是缓冲区中的数据依然存在,但是处于“被遗忘”状态
     System.out.println("-----------------clear()----------------");
     buf.clear();
     System.out.println(buf.position());// 0
     System.out.println(buf.limit());// 1024
     System.out.println(buf.capacity());// 1024
     System.out.println((char)buf.get());//i
  }
  @Test
  public void test2(){
     String str = "itheima";
     ByteBuffer buf = ByteBuffer.allocate(1024);
     buf.put(str.getBytes());// 将str写入到buf缓冲区中
     buf.flip();//转换为读模式
     byte[] dst = new byte[buf.limit()];//定义一个字节数组
     buf.get(dst, 0, 2);//将前2个字节批量写入到dst字节数组中
     System.out.println(new String(dst, 0, 2));//打印结果为it
     System.out.println(buf.position());//当前下一个读取的位置为2
     //mark() : 标记
     buf.mark();
     buf.get(dst, 2, 2);//从第3个位置开始将2个字节批量写入到dst字节数组中
     System.out.println(new String(dst, 2, 2));//打印结果为he
     System.out.println(buf.position());// 当前下一个读取的位置为4
     //reset() : 恢复到 mark 的位置
     buf.reset();
     System.out.println(buf.position());// 2
     //判断缓冲区中是否还有剩余数据
     if(buf.hasRemaining()){
        //获取缓冲区中可以操作的数量
        System.out.println(buf.remaining());// 5: 返回 position 和 limit 之间的元素个数
     }
  }
  @Test
  public void test3(){
     //分配直接缓冲区
     ByteBuffer buf = ByteBuffer.allocateDirect(1024);
     System.out.println(buf.isDirect());
  }
}

直接与非直接缓冲区:

byte byffer可以是两种类型,一种是基于直接内存(也就是非堆内存);另一种是非直接内存(也就是堆内存)。对于直接内存来说,JVM将会在IO操作上具有更高的性能,因为它
直接作用于本地系统的IO操作
。而非直接内存,也就是堆内存中的数据,如果要作IO操作,会先从本进程内存复制到直接内存,再利用本地IO处理。

从数据流的角度,非直接内存是下面这样的作用链:

本地IO-->直接内存-->非直接内存-->直接内存-->本地IO

而直接内存是:

本地IO-->直接内存-->本地IO

很明显,在做IO处理时,比如网络发送大量数据时,直接内存会具有更高的效率。直接内存使用allocateDirect创建,但是它比申请普通的堆内存需要耗费更高的性能。不过,这部分的数据是在JVM之外的,因此它不会占用应用的内存。所以呢,当你有很大的数据要缓存,并且它的生命周期又很长,那么就比较适合使用直接内存。只是一般来说,如果不是能带来很明显的性能提升,还是推荐直接使用堆内存。字节缓冲区是直接缓冲区还是非直接缓冲区可通过调用其 isDirect()  方法来确定。

使用场景

  • 有很大的数据需要存储,它的生命周期又很长

  •  适合频繁的IO操作,比如网络并发场景

五、NIO核心二:通道(Channel)

 1、通道Channe概述
  • 通道可以同时进行读写,而流只能读或者只能写

  • 通道可以实现异步读写数据

  • 通道可以从缓冲读数据,也可以写数据到缓冲:

2、NIO 的通道类似于流,但有些区别如下:

通道可以同时进行读写,而流只能读或者只能写

通道可以实现异步读写数据

通道可以从缓冲读数据,也可以写数据到缓冲:

3、BIO 中的 stream 是单向的,例如 FileInputStream 对象只能进行读取数据的操作,而 NIO 中的通道(Channel)是双向的,可以读操作,也可以写操作。
public interface Channel extends Closeable{}
5、常用的Channel实现类
  • FileChannel:用于读取、写入、映射和操作文件的通道。

  • DatagramChannel:通过 UDP 读写网络中的数据通道。

  • SocketChannel:通过 TCP 读写网络中的数据。

  • ServerSocketChannel:可以监听新进来的 TCP 连接,对每一个新进来的连接都会创建一个 SocketChannel。 【ServerSocketChanne 类似 ServerSocket , SocketChannel 类似 Socket】

6、FileChannel 类

获取通道的一种方式是对支持通道的对象调用getChannel() 方法。支持通道的类如下

  • FileInputStream

  • FileOutputStream

  • RandomAccessFile

  • DatagramSocket

  • Socket

  • ServerSocket

  • 获取通道的其他方式是使用 Files 类的静态方法 newByteChannel() 获取字节通道。或者通过通道的静态方法 open() 打开并返回指定通道

7、FileChannel常用方法
  • int read(ByteBuffer dst) :从Channel 到 中读取数据到  ByteBuffer

  • long  read(ByteBuffer[] dsts) : 将Channel中的数据&ldquo;分散&rdquo;到  ByteBuffer[]

  • int  write(ByteBuffer src) :将  ByteBuffer中的数据写入到  Channel

  • long write(ByteBuffer[] srcs) :将  ByteBuffer[] 到 中的数据&ldquo;聚集&rdquo;到  Channel

  • long position() :返回此通道的文件位置

  • FileChannel position(long p) :设置此通道的文件位置

  • long size() :返回此通道的文件的当前大小

  • FileChannel truncate(long s) :将此通道的文件截取为给定大小

  • void force(boolean metaData) :强制将所有对此通道的文件更新写入到存储设备中

8、案例1-本地文件写数据
package com.kgf.kgfjavalearning2021.io.nio;
import org.junit.Test;
import java.io.FileOutputStream;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
/***
* 需求:使用前面学习后的 ByteBuffer(缓冲)和 FileChannel(通道), 将数据写入到 data.txt 中.
*/
public class ChannelTest {
   @Test
   public void write(){
       try {
           // 1、字节输出流通向目标文件
           FileOutputStream fos = new FileOutputStream("E:\\test\\data01.txt");
           // 2、得到字节输出流对应的通道Channel
           FileChannel channel = fos.getChannel();
           // 3、分配缓冲区
           ByteBuffer buffer = ByteBuffer.allocate(1024);
           for (int i = 0; i < 10; i++) {
               buffer.clear();//清空缓冲区
               buffer.put(("hello,使用Buffer和channel实现写数据到文件中"+i+"\r\n").getBytes());
               // 4、把缓冲区切换成写出模式
               buffer.flip();
               channel.write(buffer);//将缓冲区的数据写入到文件通道
           }
           channel.close();
           System.out.println("写数据到文件中!");
       } catch (Exception e) {
           e.printStackTrace();
       }
   }
}
9、案例2-本地文件读数据
/***
    * 设置两个缓冲区,一大一小,大的缓冲区为每次读取的量,小的缓冲区存放每行的数据(确保大小可存放文本中最长的那行)。读取的时候判断是不是换行符13,是的话则返回一行数据,不是的话继续读取,直到读完文件。
    * @throws Exception
    */
   @Test
   public void read() throws Exception {
       // 1、定义一个文件字节输入流与源文件接通
       FileInputStream is = new FileInputStream("E:\\test\\data01.txt");
       // 2、需要得到文件字节输入流的文件通道
       FileChannel channel = is.getChannel();
       // 3、定义一个缓冲区
       int bufferSize = 1024 * 1024;  // 每一块的大小
       ByteBuffer buffer = ByteBuffer.allocate(bufferSize);
       ByteBuffer bb = ByteBuffer.allocate(1024);
       // 4、读取数据到缓冲区
       int bytesRead = channel.read(buffer);
       while (bytesRead != -1) {
           buffer.flip();// 切换模式,写->读
           while (buffer.hasRemaining()) {//返回 position 和 limit 之间的元素个数
                   byte b = buffer.get();
                   if (b == 10 || b == 13) { // 换行或回车
                       bb.flip();
                       // 这里就是一个行
                       final String line = Charset.forName("utf-8").decode(bb).toString();
                       System.out.println(line);// 解码已经读到的一行所对应的字节
                       bb.clear();
                   } else {
                       if (bb.hasRemaining())
                           bb.put(b);
                       else { // 空间不够扩容
                           bb = reAllocate(bb);
                           bb.put(b);
                       }
                   }
           }
           buffer.clear();// 清空,position位置为0,limit=capacity
           //  继续往buffer中写
           bytesRead = channel.read(buffer);
       }
       channel.close();
   }
10、案例3-使用Buffer完成文件复制
/**
    * 使用 FileChannel(通道) ,完成文件的拷贝。
    * @throws Exception
    */
   @Test
   public void copy() throws Exception {
       // 源文件
       File srcFile = new File("E:\\test\\Aurora-4k.jpg");
       File destFile = new File("E:\\test\\Aurora-4k-new.jpg");
       // 得到一个字节字节输入流
       FileInputStream fis = new FileInputStream(srcFile);
       // 得到一个字节输出流
       FileOutputStream fos = new FileOutputStream(destFile);
       // 得到的是文件通道
       FileChannel isChannel = fis.getChannel();
       FileChannel osChannel = fos.getChannel();
       // 分配缓冲区
       ByteBuffer buffer = ByteBuffer.allocate(1024);
       while(isChannel.read(buffer)>0){
           // 已经读取了数据 ,把缓冲区的模式切换成可读模式
           buffer.flip();
           // 把数据写出到
           osChannel.write(buffer);//将buffer缓冲区中的数据写入到osChannel中
           // 必须先清空缓冲然后再写入数据到缓冲区
           buffer.clear();
       }
       isChannel.close();
       osChannel.close();
       System.out.println("复制完成!");
   }
11、案例4-transferFrom()

从目标通道中去复制原通道数据

@Test
   public void test02() throws Exception {
       // 1、字节输入管道
       FileInputStream is = new FileInputStream("E:\\test\\Aurora-4k.jpg");
       FileChannel isChannel = is.getChannel();
       // 2、字节输出流管道
       FileOutputStream fos = new FileOutputStream("E:\\test\\Aurora-4knew3.jpg");
       FileChannel osChannel = fos.getChannel();
       // 3、复制
       osChannel.transferFrom(isChannel,isChannel.position(),isChannel.size());
       isChannel.close();
       osChannel.close();
   }
12、案例5-transferTo()

把原通道数据复制到目标通道

@Test
   public void test03() throws Exception {
       // 1、字节输入管道
       FileInputStream is = new FileInputStream("E:\\test\\Aurora-4k.jpg");
       FileChannel isChannel = is.getChannel();
       // 2、字节输出流管道
       FileOutputStream fos = new FileOutputStream("E:\\test\\Aurora-4knew4.jpg");
       FileChannel osChannel = fos.getChannel();
       // 3、复制
       isChannel.transferTo(isChannel.position() , isChannel.size() , osChannel);
       isChannel.close();
       osChannel.close();
   }
13、案例6-分散 (Scatter) 和聚集 (Gather) 分散读取
  • 分散读取(Scatter ):是指把Channel通道的数据读入到 多个缓冲区中去

  • 聚集写入(Gathering )是指将多个 Buffer 中的数 据&ldquo;聚集&rdquo;到 Channel。

//分散和聚集
@Test
public void test() throws IOException{
RandomAccessFile raf1 = new RandomAccessFile("1.txt", "rw");
//1. 获取通道
FileChannel channel1 = raf1.getChannel();
//2. 分配指定大小的缓冲区
ByteBuffer buf1 = ByteBuffer.allocate(100);
ByteBuffer buf2 = ByteBuffer.allocate(1024);
//3. 分散读取
ByteBuffer[] bufs = {buf1, buf2};
channel1.read(bufs);
for (ByteBuffer byteBuffer : bufs) {
byteBuffer.flip();
}
System.out.println(new String(bufs[0].array(), 0, bufs[0].limit()));
System.out.println("-----------------");
System.out.println(new String(bufs[1].array(), 0, bufs[1].limit()));
//4. 聚集写入
RandomAccessFile raf2 = new RandomAccessFile("2.txt", "rw");
FileChannel channel2 = raf2.getChannel();
channel2.write(bufs);
}

六、NIO核心三:选择器(Selector)

1、选择器(Selector)概述

        选择器(Selector)是SelectableChannle对象多路复用器,Selector可以同时监控多个SelectableChannel的IO状况,也就是说,利用Selector可使一个单独的线程管理多个Channel。Selector是非阻塞IO的核心。

  • Java 的 NIO,用非阻塞的 IO 方式。可以用一个线程,处理多个的客户端连接,就会使用到 Selector(选择器)

  • Selector 能够检测多个注册的通道上是否有事件发生(注意:多个 Channel 以事件的方式可以注册到同一个(Selector),如果有事件发生,便获取事件然后针对每个事件进行相应的处理。这样就可以只用一个单线程去管

  • 理多个通道,也就是管理多个连接和请求。

  • 只有在连接/通道真正有读写事件发生时,才会进行读写,就大大地减少了系统开销,并且不必为每个连接都创建一个线程,不用去维护多个线程

  • 避免了多线程之间的上下文切换导致的开销

2、选择器的应用

创建 Selector :通过调用 Selector.open() 方法创建一个 Selector。

Selector selector = Selector.open();

向选择器注册通道:SelectableChannel.register(Selector sel, int ops)

//1. 获取通道
ServerSocketChannel ssChannel = ServerSocketChannel.open();
//2. 切换非阻塞模式
ssChannel.configureBlocking(false);
//3. 绑定连接
ssChannel.bind(new InetSocketAddress(9898));
//4. 获取选择器
Selector selector = Selector.open();
//5. 将通道注册到选择器上, 并且指定“监听接收事件”
ssChannel.register(selector, SelectionKey.OP_ACCEPT);

当调用 register(Selector sel, int ops) 将通道注册选择器时,选择器对通道的监听事件,需要通过第二个参数 ops 指定。可以监听的事件类型(用 可使用 SelectionKey 的四个常量 表示):

  • 读 : SelectionKey.OP_READ (1)

  • 写 : SelectionKey.OP_WRITE (4)

  • 连接 : SelectionKey.OP_CONNECT (8)

  • 接收 : SelectionKey.OP_ACCEPT (16)

若注册时不止监听一个事件,则可以使用&ldquo;位或&rdquo;操作符连接。
int interestSet = SelectionKey.OP_READ|SelectionKey.OP_WRITE

3、NIO非阻塞式网络通信原理分析 3.1、Selector 示意图和特点说明

        Selector可以实现: 一个 I/O 线程可以并发处理 N 个客户端连接和读写操作,这从根本上解决了传统同步阻塞 I/O 一连接一线程模型,架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。

Java之NIO基本简介

3.2、服务端流程
 1)、获取通道。当客户端连接服务端时,服务端会通过 ServerSocketChannel 得到 SocketChannel:
ServerSocketChannel ssChannel = ServerSocketChannel.open();

2)、切换非阻塞模式

ssChannel.configureBlocking(false);

3)、绑定连接

ssChannel.bind(new InetSocketAddress(8888));

4)、获取选择器

Selector selector = Selector.open();

5)、将通道注册到选择器上, 并且指定&ldquo;监听接收事件&rdquo;

ssChannel.register(selector, SelectionKey.OP_ACCEPT);

6)、轮询式的获取选择器上已经&ldquo;准备就绪&rdquo;的事件

while (selector.select() > 0){
   System.out.println("开启事件处理");
   //7.获取选择器中所有注册的通道中已准备好的事件
   Iterator<SelectionKey> it = selector.selectedKeys().iterator();
   //8.开始遍历事件
   while (it.hasNext()){
       SelectionKey selectionKey = it.next();
       System.out.println("--->"+selectionKey);
       //9.判断这个事件具体是啥
       if (selectionKey.isAcceptable()){
           //10.获取当前接入事件的客户端通道
           SocketChannel socketChannel = serverSocketChannel.accept();
           //11.切换成非阻塞模式
           socketChannel.configureBlocking(false);
           //12.将本客户端注册到选择器
           socketChannel.register(selector,SelectionKey.OP_READ);
       }else if (selectionKey.isReadable()){
           //13.获取当前选择器上的读
           SocketChannel socketChannel = (SocketChannel) selectionKey.channel();
           //14.读取
           ByteBuffer buffer = ByteBuffer.allocate(1024);
           int len;
           while ((len = socketChannel.read(buffer)) > 0){
               buffer.flip();
               System.out.println(new String(buffer.array(),0,len));
               //清除之前的数据(覆盖写入)
               buffer.clear();
           }
       }
       //15.处理完毕后,移除当前事件
       it.remove();
   }
}
3.3、客户端流程

1)、获取通道

SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 8888));

2)、切换非阻塞模式

sChannel.configureBlocking(false);

3)、分配指定大小的缓冲区

ByteBuffer buffer = ByteBuffer.allocate(1024);

4)、发送数据给绑定的服务端

Scanner scan = new Scanner(System.in);
while(scan.hasNext()){
String str = scan.nextLine();
buf.put((new SimpleDateFormat("yyyy/MM/dd HH:mm:ss").format(System.currentTimeMillis())
+ "\n" + str).getBytes());
buf.flip();
sChannel.write(buf);
buf.clear();
}
//关闭通道
sChannel.close();
4、NIO非阻塞式网络通信入门案例

需求:服务端接收客户端的连接请求,并接收多个客户端发送过来的事件。

Server端代码实现:

package nio.ss;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.Iterator;
public class Server {
   public static void main(String[] args) {
       try {
           //1.获取管道
           ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
           //2.设置非阻塞模式
           serverSocketChannel.configureBlocking(false);
           //3.绑定端口
           serverSocketChannel.bind(new InetSocketAddress(8888));
           //4.获取选择器
           Selector selector = Selector.open();
           //5.将通道注册到选择器上,并且开始指定监听的接收事件
           serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
           //6.轮询已经就绪的事件
           while (selector.select() > 0){
               System.out.println("开启事件处理");
               //7.获取选择器中所有注册的通道中已准备好的事件
               Iterator<SelectionKey> it = selector.selectedKeys().iterator();
               //8.开始遍历事件
               while (it.hasNext()){
                   SelectionKey selectionKey = it.next();
                   System.out.println("--->"+selectionKey);
                   //9.判断这个事件具体是啥
                   if (selectionKey.isAcceptable()){
                       //10.获取当前接入事件的客户端通道
                       SocketChannel socketChannel = serverSocketChannel.accept();
                       //11.切换成非阻塞模式
                       socketChannel.configureBlocking(false);
                       //12.将本客户端注册到选择器
                       socketChannel.register(selector,SelectionKey.OP_READ);
                   }else if (selectionKey.isReadable()){
                       //13.获取当前选择器上的读
                       SocketChannel socketChannel = (SocketChannel) selectionKey.channel();
                       //14.读取
                       ByteBuffer buffer = ByteBuffer.allocate(1024);
                       int len;
                       while ((len = socketChannel.read(buffer)) > 0){
                           buffer.flip();
                           System.out.println(new String(buffer.array(),0,len));
                           //清除之前的数据(覆盖写入)
                           buffer.clear();
                       }
                   }
                   //15.处理完毕后,移除当前事件
                   it.remove();
               }
           }
       } catch (IOException e) {
           e.printStackTrace();
       }
   }
}

Client端代码实现:

package nio.ss;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;
import java.util.Scanner;
public class Client {
   public static void main(String[] args) {
       try {
           SocketChannel socketChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1",8888));
           socketChannel.configureBlocking(false);
           ByteBuffer buffer = ByteBuffer.allocate(1024);
           Scanner scanner = new Scanner(System.in);
           while (true){
               System.out.print("请输入:");
               String msg = scanner.nextLine();
               buffer.put(msg.getBytes());
               buffer.flip();
               socketChannel.write(buffer);
               buffer.clear();
           }
       } catch (IOException e) {
           e.printStackTrace();
       }
   }
}
5、NIO 网络编程应用实例-群聊系统

需求:进一步理解 NIO 非阻塞网络编程机制,实现多人群聊

  • 编写一个 NIO 群聊系统,实现客户端与客户端的通信需求(非阻塞)

  • 服务器端:可以监测用户上线,离线,并实现消息转发功能

  • 客户端:通过 channel 可以无阻塞发送消息给其它所有客户端用户,同时可以接受其它客户端用户通过服务端转发来的消息

服务端代码:

package nio.chat;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.Iterator;
/**
*
*/
public class Server {
   //定义属性
   private Selector selector;
   private ServerSocketChannel ssChannel;
   private static final int PORT = 9999;
   //构造器
   //初始化工作
   public Server() {
       try {
           // 1、获取通道
           ssChannel = ServerSocketChannel.open();
           // 2、切换为非阻塞模式
           ssChannel.configureBlocking(false);
           // 3、绑定连接的端口
           ssChannel.bind(new InetSocketAddress(PORT));
           // 4、获取选择器Selector
           selector = Selector.open();
           // 5、将通道都注册到选择器上去,并且开始指定监听接收事件
           ssChannel.register(selector , SelectionKey.OP_ACCEPT);
       }catch (IOException e) {
           e.printStackTrace();
       }
   }
   //监听
   public void listen() {
       System.out.println("监听线程:" + Thread.currentThread().getName());
       try {
           while (selector.select() > 0){
               // 7、获取选择器中的所有注册的通道中已经就绪好的事件
               Iterator<SelectionKey> it = selector.selectedKeys().iterator();
               // 8、开始遍历这些准备好的事件
               while (it.hasNext()){
                   // 提取当前这个事件
                   SelectionKey sk = it.next();
                   // 9、判断这个事件具体是什么
                   if(sk.isAcceptable()){
                       // 10、直接获取当前接入的客户端通道
                       SocketChannel schannel = ssChannel.accept();
                       // 11 、切换成非阻塞模式
                       schannel.configureBlocking(false);
                       // 12、将本客户端通道注册到选择器
                       System.out.println(schannel.getRemoteAddress() + " 上线 ");
                       schannel.register(selector , SelectionKey.OP_READ);
                       //提示
                   }else if(sk.isReadable()){
                       //处理读 (专门写方法..)
                       readData(sk);
                   }
                   it.remove(); // 处理完毕之后需要移除当前事件
               }
           }
       }catch (Exception e) {
           e.printStackTrace();
       }finally {
           //发生异常处理....
       }
   }
   //读取客户端消息
   private void readData(SelectionKey key) {
       //获取关联的channel
       SocketChannel channel = null;
       try {
           //得到channel
           channel = (SocketChannel) key.channel();
           //创建buffer
           ByteBuffer buffer = ByteBuffer.allocate(1024);
           int count = channel.read(buffer);
           //根据count的值做处理
           if(count > 0) {
               //把缓存区的数据转成字符串
               String msg = new String(buffer.array());
               //输出该消息
               System.out.println("来自客户端---> " + msg);
               //向其它的客户端转发消息(去掉自己), 专门写一个方法来处理
               sendInfoToOtherClients(msg, channel);
           }
       }catch (IOException e) {
           try {
               System.out.println(channel.getRemoteAddress() + " 离线了..");
               e.printStackTrace();
               //取消注册
               key.cancel();
               //关闭通道
               channel.close();
           }catch (IOException e2) {
               e2.printStackTrace();;
           }
       }
   }
   //转发消息给其它客户(通道)
   private void sendInfoToOtherClients(String msg, SocketChannel self ) throws  IOException{
       System.out.println("服务器转发消息中...");
       System.out.println("服务器转发数据给客户端线程: " + Thread.currentThread().getName());
       //遍历 所有注册到selector 上的 SocketChannel,并排除 self
       for(SelectionKey key: selector.keys()) {
           //通过 key  取出对应的 SocketChannel
           Channel targetChannel = key.channel();
           //排除自己
           if(targetChannel instanceof  SocketChannel && targetChannel != self) {
               //转型
               SocketChannel dest = (SocketChannel)targetChannel;
               //将msg 存储到buffer
               ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
               //将buffer 的数据写入 通道
               dest.write(buffer);
           }
       }
   }
   public static void main(String[] args) {
       //创建服务器对象
       Server groupChatServer = new Server();
       groupChatServer.listen();
   }
}

客户端代码:

package nio.chat;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Scanner;
public class Client {
   //定义相关的属性
   private final String HOST = "127.0.0.1"; // 服务器的ip
   private final int PORT = 9999; //服务器端口
   private Selector selector;
   private SocketChannel socketChannel;
   private String username;
   //构造器, 完成初始化工作
   public Client() throws IOException {
       selector = Selector.open();
       //连接服务器
       socketChannel = socketChannel.open(new InetSocketAddress("127.0.0.1", PORT));
       //设置非阻塞
       socketChannel.configureBlocking(false);
       //将channel 注册到selector
       socketChannel.register(selector, SelectionKey.OP_READ);
       //得到username
       username = socketChannel.getLocalAddress().toString().substring(1);
       System.out.println(username + " is ok...");
   }
   //向服务器发送消息
   public void sendInfo(String info) {
       info = username + " 说:" + info;
       try {
           socketChannel.write(ByteBuffer.wrap(info.getBytes()));
       }catch (IOException e) {
           e.printStackTrace();
       }
   }
   //读取从服务器端回复的消息
   public void readInfo() {
       try {
           int readChannels = selector.select();
           if(readChannels > 0) {//有可以用的通道
               Iterator<SelectionKey> iterator = selector.selectedKeys().iterator();
               while (iterator.hasNext()) {
                   SelectionKey key = iterator.next();
                   if(key.isReadable()) {
                       //得到相关的通道
                       SocketChannel sc = (SocketChannel) key.channel();
                       //得到一个Buffer
                       ByteBuffer buffer = ByteBuffer.allocate(1024);
                       //读取
                       sc.read(buffer);
                       //把读到的缓冲区的数据转成字符串
                       String msg = new String(buffer.array());
                       System.out.println(msg.trim());
                   }
               }
               iterator.remove(); //删除当前的selectionKey, 防止重复操作
           } else {
               //System.out.println("没有可以用的通道...");
           }
       }catch (Exception e) {
           e.printStackTrace();
       }
   }
   public static void main(String[] args) throws Exception {
       //启动我们客户端
       Client chatClient = new Client();
       //启动一个线程, 每个3秒,读取从服务器发送数据
       new Thread() {
           public void run() {
               while (true) {
                   chatClient.readInfo();
                   try {
                       Thread.currentThread().sleep(3000);
                   }catch (InterruptedException e) {
                       e.printStackTrace();
                   }
               }
           }
       }.start();
       //发送数据给服务器端
       Scanner scanner = new Scanner(System.in);
       while (scanner.hasNextLine()) {
           String s = scanner.nextLine();
           chatClient.sendInfo(s);
       }
   }
}

七、AIO 深入剖析

Java AIO(NIO.2) : 异步非阻塞,服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理。

AIO:异步非阻塞,基于NIO的,可以称之为NIO2.0
   BIO                   NIO                              AIO        
Socket                SocketChannel                    AsynchronousSocketChannel
ServerSocket          ServerSocketChannel       AsynchronousServerSocketChannel

与NIO不同,当进行读写操作时,只须直接调用API的read或write方法即可, 这两种方法均为异步的,对于读操作而言,当有流可读取时,操作系统会将可读的流传入read方法的缓冲区,对于写操作而言,当操作系统将write方法传递的流写入完毕时,操作系统主动通知应用程序

即可以理解为,read/write方法都是异步的,完成后会主动调用回调函数。在JDK1.7中,这部分内容被称作NIO.2,主要在Java.nio.channels包下增加了下面四个异步通道:

  • AsynchronousSocketChannel

  • AsynchronousServerSocketChannel

  • AsynchronousFileChannel

  • AsynchronousDatagramChannel

八、总结

BIO、NIO、AIO:

  • Java BIO : 同步并阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善。

  • Java NIO : 同步非阻塞,服务器实现模式为一个请求一个线程,即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。

  • Java AIO(NIO.2) : 异步非阻塞,服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理。

BIO、NIO、AIO适用场景分析:

  • BIO方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4以前的唯一选择,但程序直观简单易理解。

  • NIO方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,并发局限于应用中,编程比较复杂,JDK1.4开始支持。

  • AIO方式使用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用OS参与并发操作,编程比较复杂,JDK7开始支持。Netty!

来源:https://blog.csdn.net/K_520_W/article/details/123454627

标签:java,NIO
0
投稿

猜你喜欢

  • Android电量优化提高手机续航

    2022-06-14 11:39:40
  • C#中List集合使用Max()方法查找到最大值的实例

    2023-12-01 08:03:32
  • WebSocket实现Web聊天室功能

    2023-11-27 06:10:52
  • 拉钩网java笔试题分享

    2022-02-13 08:48:25
  • Android控件gridview实现单行多列横向滚动效果

    2022-09-11 10:53:49
  • Android中Toolbar随着ScrollView滑动透明度渐变效果实现

    2023-10-08 21:06:50
  • C# 如何解析获取Url参数值

    2022-07-03 01:00:52
  • Java远程连接Linux服务器并执行命令及上传文件功能

    2023-01-28 14:03:31
  • Java创建线程的五种写法总结

    2023-01-10 04:39:34
  • 使用UITextField限制输入金额是正确小数

    2023-12-19 23:21:17
  • C#通用邮件发送类分享

    2022-05-03 01:35:36
  • SpringMVC配置多个properties文件之通配符解析

    2021-10-18 02:19:02
  • spring-boot-maven-plugin引入出现爆红(已解决)

    2021-06-06 12:05:35
  • Kotlin协程launch原理详解

    2023-05-19 09:36:01
  • spring cloud consul注册的服务报错critical的解决

    2021-05-28 14:13:14
  • Kotlin中常见内联扩展函数的使用方法教程

    2023-07-04 13:46:12
  • c# webapi 配置swagger的方法

    2022-03-21 23:38:19
  • OpenCV实现人脸识别简单程序

    2023-07-07 00:31:12
  • 详解Java中的println输入和toString方法的重写问题

    2022-12-24 05:26:33
  • Java十分钟精通异常处理机制

    2022-08-04 19:03:07
  • asp之家 软件编程 m.aspxhome.com