深入理解堆排序及其分析

时间:2022-05-09 00:16:09 

记得在学习数据结构的时候一味的想用代码实现算法,重视的是写出来的代码有一个正确的输入,然后有一个正确的输出,那么就很满足了。从网上看了许多的代码,看了之后貌似懂了,自己写完之后也正确了,但是不久之后就忘了,因为大脑在回忆的时候,只依稀记得代码中的部分,那么的模糊,根本不能再次写出正确的代码,也许在第一次写的时候是因为参考了别人的代码,看过之后大脑可以进行短暂的高清晰记忆,于是欺骗了我,以为自己写出来的,满足了成就感。可是代码是计算机识别的,而我们更喜欢文字,图像。所以我们在学习算法的时候要注重算法的原理以及算法的分析,用文字,图像表达出来,然后当需要用的时候再将文字转换为代码。记忆分为三个步骤:编码,存储和检索,就以学习为例,先理解知识,再归纳知识,最后巩固知识,为了以后的应用而方便检索知识。

堆排序过程
堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

既然是堆排序,自然需要先建立一个堆,而建堆的核心内容是调整堆,使二叉树满足堆的定义(每个节点的值都不大于其父节点的值)。调堆的过程应该从最后一个非叶子节点开始,假设有数组A = {1, 3, 4, 5, 7, 2, 6, 8, 0}。那么调堆的过程如下图,数组下标从0开始,A[3] = 5开始。分别与左孩子和右孩子比较大小,如果A[3]最大,则不用调整,否则和孩子中的值最大的一个交换位置,在图1中是A[7] > A[3] > A[8],所以A[3]与A[7]对换,从图1.1转到图1.2。

深入理解堆排序及其分析

所以建堆的过程就是


for ( i = headLen/2; i >= 0; i++)

        do AdjustHeap(A, heapLen, i)

建堆完成之后,堆如图1.7是个大根堆。将A[0] = 8 与 A[heapLen-1]交换,然后heapLen减一,如图2.1,然后AdjustHeap(A, heapLen-1, 0),如图2.2。如此交换堆的第一个元
素和堆的最后一个元素,然后堆的大小heapLen减一,对堆的大小为heapLen的堆进行调堆,如此循环,直到heapLen == 1时停止,最后得出结果如图3。

深入理解堆排序及其分析

深入理解堆排序及其分析


/*
     输入:数组A,堆的长度hLen,以及需要调整的节点i
     功能:调堆
 */

 void AdjustHeap(int A[], int hLen, int i)
 {
     int left = LeftChild(i);  //节点i的左孩子
     int right = RightChild(i); //节点i的右孩子节点
     int largest = i;
     int temp;

     while(left < hLen || right < hLen)
     {
         if (left < hLen && A[largest] < A[left])
         {
             largest = left;
         }

         if (right < hLen && A[largest] < A[right])
         {
             largest = right;
         }

         if (i != largest)   //如果最大值不是父节点
         {
              temp = A[largest]; //交换父节点和和拥有最大值的子节点交换
              A[largest] = A[i];
              A[i] = temp;

             i = largest;         //新的父节点,以备迭代调堆
             left = LeftChild(i);  //新的子节点
             right = RightChild(i);
         }
         else
         {
             break;
         }
     }
 }

 /*
     输入:数组A,堆的大小hLen
     功能:建堆
 */
 void BuildHeap(int A[], int hLen)
 {
     int i;
     int begin = hLen/2 - 1;  //最后一个非叶子节点
     for (i = begin; i >= 0; i--)
     {
         AdjustHeap(A, hLen, i); 
     }
 }

 /*
     输入:数组A,待排序数组的大小aLen
     功能:堆排序
 */
 void HeapSort(int A[], int aLen)
 {
     int hLen = aLen;
     int temp;

     BuildHeap(A, hLen);      //建堆

     while (hLen > 1)
     {
         temp = A[hLen-1];    //交换堆的第一个元素和堆的最后一个元素
         A[hLen-1] = A[0];
         A[0] = temp;
         hLen--;        //堆的大小减一
         AdjustHeap(A, hLen, 0);  //调堆
     }
 }


性能分析
•调堆:上面已经分析了,调堆的运行时间为O(h)。
•建堆:每一层最多的节点个数为n1 = ceil(n/(2^(h+1))),

深入理解堆排序及其分析

因此,建堆的运行时间是O(n)。
•循环调堆(代码67-74),因为需要调堆的是堆顶元素,所以运行时间是O(h) = O(floor(logn))。所以循环调堆的运行时间为O(nlogn)。
总运行时间T(n) = O(nlogn) + O(n) = O(nlogn)。对于堆排序的最好情况与最坏情况的运行时间,因为最坏与最好的输入都只是影响建堆的运行时间O(1)或者O(n),而在总体时间中占重要比例的是循环调堆的过程,即O(nlogn) + O(1) =O(nlogn) + O(n) = O(nlogn)。因此最好或者最坏情况下,堆排序的运行时间都是O(nlogn)。而且堆排序还是原地算法(in-place algorithm)。

标签:堆排序
0
投稿

猜你喜欢

  • javaweb图书商城设计之用户模块(1)

    2023-10-30 09:22:57
  • 利用Java代码写一个并行调用模板

    2023-07-04 16:00:39
  • 新手小白用C# winform 读取Excel表的实现

    2022-12-27 15:45:12
  • Springboot集成Elasticsearch的步骤与相关功能

    2022-07-23 06:47:30
  • Android 重写ViewGroup 分析onMeasure()和onLayout()方法

    2023-10-27 23:58:06
  • JAVA实现社会统一信用代码校验的方法

    2023-04-10 08:38:21
  • Android应用中图片浏览时实现自动切换功能的方法详解

    2023-04-13 15:34:00
  • Android 使用Vibrator服务实现点击按钮带有震动效果

    2023-06-15 01:57:16
  • Java实战之用Swing实现通讯录管理系统

    2021-08-15 08:24:09
  • Java实现简易俄罗斯方块

    2022-12-18 14:07:58
  • C#集合之位数组的用法

    2021-07-25 18:31:08
  • SpringBoot配置Profile实现多环境支持

    2023-07-29 21:53:20
  • 记一次springboot服务凌晨无故宕机问题的解决

    2023-07-25 04:50:23
  • Android隐私协议提示弹窗的实现流程详解

    2023-03-02 11:33:16
  • 浅谈SpringMVC HandlerInterceptor诡异问题排查

    2023-07-24 05:34:06
  • C#实现微信跳一跳小游戏的自动跳跃助手开发实战

    2022-12-11 02:49:08
  • Hibernate持久化对象生命周期原理解析

    2022-08-14 19:44:27
  • Android app第三方支付宝支付接入教程

    2022-06-05 20:02:19
  • Android如何基于坐标对View进行模拟点击事件详解

    2021-09-24 06:27:30
  • 基于Android SQLite的升级详解

    2021-06-24 05:26:05
  • asp之家 软件编程 m.aspxhome.com