详解Java利用深度优先遍历解决迷宫问题

作者:炒鸡辣鸡123 时间:2022-08-20 02:46:54 

什么是深度优先

什么是深度,即向下,深度优先,即向下优先,一口气走到底,走到底发现没路再往回走。

在算法实现上来讲,深度优先可以考虑是递归的代名词,深度优先搜索必然需要使用到递归的思路。

有的人可能会说了,我可以用栈来实现,以迭代的方式,那么问题来了,栈这种数据结构,同学们认为是否也囊括了递归呢?Java语言的方法区本身也是实现在一个栈空间上的。

一个简单的例子

我们以一个简单的迷宫为例,以1代表墙,0代表路径,我们构造一个具有出入口的迷宫。

1 1 0 1 1 1 1 1 1

1 0 0 0 0 0 0 1 1

1 0 1 1 1 1 0 1 1

1 0 0 0 0 1 0 0 1

1 1 1 1 1 1 1 0 1

以上面这个0为入口,下面这个0为出口,那么深度优先的算法遍历顺序,方向的遍历顺序为左下右上,以dp[0][2]为入口,我把这个过程列在下面了:

第一步:

dp[0][2] -> dp[1][2]

第二步:

dp[1][2] -> dp[1][1]

第三步:

dp[1][1] -> dp[2][1]

第四步:

dp[2][1] -> dp[3][1]

第五步:

dp[3][1] -> dp[3][2]

第六步:

dp[3][2] -> dp[3][3]

第七步:

dp[3][3] -> dp[3][4]

第八步:

dp[3][4] -> dp[3][5] 由于 dp[3][5]是墙,所以深度优先算法需要开始回退,最终会回退到dp[1][2]这个位置,然后向右走

第八步:

dp[1][2] -> dp[1][3]

第九步:

dp[1][3] -> dp[1][4]

第十步:

dp[1][4] -> dp[1][5]

第十一步:

dp[1][5] -> dp[1][6]

第十二步:

dp[1][6] -> dp[2][6]

第十三步:

dp[2][6] -> dp[3][6]

第十四步:

dp[3][6] -> dp[3][7]

第十五步:

dp[3][7] -> dp[4][7] 终点,程序退出

可以发现,深度优先算法有点像我们的人生,需要不断试错,错了就退,直到找到一条通往出口的路。

现在让我们动手用代码实现一下上面的步骤吧。

程序实现

以深度优先的方式解决这个问题,主要考虑两点,首先是如何扩展节点,我们的顺序是左,下,右,上,那么,应该以什么样的方式实现这个呢?第二点,就是如何实现深度优先,虽然原理上肯定是递归,但是应该如何递归呢?要解决这两个问题,请看示例代码,以Java为例:

package com.chaojilaji.book;

import com.chaojilaji.book.util.InputUtils;

import java.util.HashSet;
import java.util.Set;

import static com.chaojilaji.book.util.CheckUtils.canAdd;

public class Dfs {

public static Integer dfs(String[][] a, int currentX, int currentY, int chux, int chuy, Set<Integer> cache) {
       System.out.println(currentY + " " + currentX);
       if (currentX == chux && currentY == chuy) {
           return 1;
       }
       // TODO: 2022/1/11 枚举子节点,左 下 右 上
       int[] x = new int[]{-1, 0, 1, 0};
       int[] y = new int[]{0, 1, 0, -1};
       for (int i = 0; i < 4; i++) {
           if (canAdd(a, currentX + x[i], currentY + y[i], cache)) {
               Integer tmp = dfs(a, currentX + x[i], currentY + y[i], chux, chuy, cache);
               if (tmp != 0) {
                   System.out.println(currentY + " " + currentX + " 结果路径");
                   return tmp + 1;
               }
           }
       }
       System.out.println(currentY + " " + currentX + " 回滚");
       return 0;
   }

public static Integer getAns(String[][] a) {
       int m = a[0].length;
       int n = a.length;
       int rux = -1, ruy = 0;
       int chux = -1, chuy = n - 1;
       for (int i = 0; i < m; i++) {
           if (a[0][i].equals("0")) {
               // TODO: 2022/1/11 找到入口
               rux = i;
           }
           if (a[n - 1][i].equals("0")) {
               chux = i;
           }
       }
       Set<Integer> cache = new HashSet<>();
       cache.add(rux * 100000 + ruy);
       System.out.println("打印行走过程");
       return dfs(a, rux, ruy, chux, chuy, cache)-1;
   }

public static void demo() {
       String x = "1  1  0  1  1  1  1  1  1\n" +
               "1  0  0  0  0  0  0  1  1\n" +
               "1  0  1  1  1  1  0  1  1\n" +
               "1  0  0  0  0  1  0  0  1\n" +
               "1  1  1  1  1  1  1  0  1";
       String[][] a = InputUtils.getInput(x);
       Integer ans = getAns(a);
       System.out.println(ans == -1 ? "不可达" : "可达,需要行走" + ans + "步");

}

public static void main(String[] args) {
       demo();
   }

}

这里的canAdd方法是临界判断函数,如下:

/**
    * 临界判断
    * @param a
    * @param x
    * @param y
    * @param cache
    * @return
    */
public static Boolean canAdd(String[][] a, Integer x, Integer y, Set<Integer> cache) {
   int m = a[0].length;
   int n = a.length;
   if (x < 0 || x >= m) {
       return false;
   }
   if (y < 0 || y >= n) {
       return false;
   }
   if (a[y][x].equals("0") && !cache.contains(x * 100000 + y)) {
       cache.add(x * 100000 + y);
       return true;
   }
   return false;
}

可以瞧见,这里面最核心的代码在于dfs这个函数,让我们来深入分析一波

public static Integer dfs(String[][] a, int currentX, int currentY, int chux, int chuy, Set<Integer> cache) {
   System.out.println(currentY + " " + currentX);
   if (currentX == chux && currentY == chuy) {
       return 1;
   }
   // TODO: 2022/1/11 枚举子节点,左 下 右 上
   int[] x = new int[]{-1, 0, 1, 0};
   int[] y = new int[]{0, 1, 0, -1};
   for (int i = 0; i < 4; i++) {
       if (canAdd(a, currentX + x[i], currentY + y[i], cache)) {
           Integer tmp = dfs(a, currentX + x[i], currentY + y[i], chux, chuy, cache);
           if (tmp != 0) {
               System.out.println(currentY + " " + currentX + " 结果路径");
               return tmp + 1;
           }
       }
   }
   System.out.println(currentY + " " + currentX + " 回滚");
   return 0;
}

首先,dfs深度优先,首先应该写的是判断终止条件,这里的终止条件就是到达终点,即目前的横纵坐标等于出口的横纵坐标。

然后,我们利用两个方向数组作为移动方案,也就是

// TODO: 2022/1/11 枚举子节点,左 下 右 上
   int[] x = new int[]{-1, 0, 1, 0};
   int[] y = new int[]{0, 1, 0, -1};
   for (int i = 0; i < 4; i++) {
       if (canAdd(a, currentX + x[i], currentY + y[i], cache)) {
       }
   }

这种方法,是数组类型的移动方式的兼容写法,不管你的移动方向有多少,都可以配在x和y两个数组中。定义了四个方向,现在我们需要思考递归的过程。

既然我完成的时候是返回1,那么其实如果在这条路上的所有都应该加1,所以,就有了下面的判断

if (canAdd(a, currentX + x[i], currentY + y[i], cache)) {
   Integer tmp = dfs(a, currentX + x[i], currentY + y[i], chux, chuy, cache);
   if (tmp != 0) {
       System.out.println(currentY + " " + currentX + " 结果路径");
       return tmp + 1;
   }
}

当子dfs出来的结果不为0,说明该子dfs是可以到达出口的,那么直接把结果加1返回给上层即可。如果子dfs出来的结果为0,说明该子dfs是不能到达出口的,就直接返回0即可。

来源:https://blog.csdn.net/xielinrui123/article/details/122628229

标签:Java,深度优先
0
投稿

猜你喜欢

  • Android 应用指定浏览器开发实例

    2022-02-10 03:34:09
  • Java的封装类和装箱拆箱详解

    2023-09-20 22:41:22
  • Spring 应用中集成 Apache Shiro的方法

    2023-02-18 05:44:55
  • 两路归并的数组与链表的实现方法

    2021-10-28 04:32:15
  • java8 stream 如何打印数据元素

    2022-08-20 18:40:02
  • SpringBoot结合SpringSecurity实现图形验证码功能

    2023-02-25 16:04:52
  • java注解的类型知识点总结

    2022-11-04 00:26:02
  • Java中@ConfigurationProperties实现自定义配置绑定问题分析

    2023-01-23 23:23:47
  • Java链表(Linked List)基本原理与实现方法入门示例

    2021-10-12 05:49:14
  • 使用 CliWrap 让C#中的命令行交互(推荐)

    2023-04-19 01:31:51
  • 客户端Socket与服务端ServerSocket串联实现网络通信

    2023-08-11 00:01:17
  • Android 属性动画ValueAnimator与插值器详解

    2023-04-12 19:05:33
  • Java数据结构之线段树详解

    2022-09-03 08:13:32
  • Android Service启动流程刨析

    2023-07-31 11:28:58
  • Spring Boot自动注入的原理分析

    2023-03-29 04:19:44
  • Mybatis获取参数值和查询功能的案例详解

    2023-02-09 13:25:14
  • Android控件之ListView用法实例详解

    2023-09-11 00:39:26
  • Android封装实现短信验证码的获取倒计时

    2023-06-28 22:57:23
  • C# 得到某一天的起始和截止时间的代码

    2021-11-13 10:57:54
  • Android自定义View仿探探卡片滑动效果

    2023-03-18 14:54:16
  • asp之家 软件编程 m.aspxhome.com