Java笛卡尔积算法原理与实现方法详解

作者:coconut_zhang 时间:2023-11-18 22:08:17 

本文实例讲述了Java笛卡尔积算法原理与实现方法。分享给大家供大家参考,具体如下:

笛卡尔积算法的Java实现:

Java笛卡尔积算法原理与实现方法详解

(1)循环内,每次只有一列向下移一个单元格,就是CounterIndex指向的那列。
(2)如果该列到尾部了,则这列index重置为0,而CounterIndex则指向前一列,相当于进位,把前列的index加一。
(3)最后,由生成的行数来控制退出循环。


public class Test {
private static String[] aa = { "aa1", "aa2" };
private static String[] bb = { "bb1", "bb2", "bb3" };
private static String[] cc = { "cc1", "cc2", "cc3", "cc4" };
private static String[][] xyz = { aa, bb, cc };
private static int counterIndex = xyz.length - 1;
private static int[] counter = { 0, 0, 0 };
public static void main(String[] args) throws Exception {
 for (int i = 0; i < aa.length * bb.length * cc.length; i++) {
  System.out.print(aa[counter[0]]);
  System.out.print("\t");
  System.out.print(bb[counter[1]]);
  System.out.print("\t");
  System.out.print(cc[counter[2]]);
  System.out.println();
  handle();
 }
}
public static void handle() {
 counter[counterIndex]++;
 if (counter[counterIndex] >= xyz[counterIndex].length) {
  counter[counterIndex] = 0;
  counterIndex--;
  if (counterIndex >= 0) {
   handle();
  }
  counterIndex = xyz.length - 1;
 }
}
}

输出共2*3*4=24行:


aa1 bb1 cc1
aa1 bb1 cc2
aa1 bb1 cc3
aa1 bb1 cc4
aa1 bb2 cc1
aa1 bb2 cc2
aa1 bb2 cc3
aa1 bb2 cc4
aa1 bb3 cc1
aa1 bb3 cc2
aa1 bb3 cc3
aa1 bb3 cc4
aa2 bb1 cc1
aa2 bb1 cc2
aa2 bb1 cc3
aa2 bb1 cc4
aa2 bb2 cc1
aa2 bb2 cc2
aa2 bb2 cc3
aa2 bb2 cc4
aa2 bb3 cc1
aa2 bb3 cc2
aa2 bb3 cc3
aa2 bb3 cc4

最近碰到了一个笛卡尔积的算法要求,比如传递过来的参数是"1,3,6,7==4,5,8,9==3,4==43,45,8,9==35,4",则返回的是一个list,如[1,4,3,43,35][1,4,3,43,4][1,4,3,45,35]……,该list包含是4*4*2*4*2=256个元素,现在的思路是这样的:


import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class DescartesTest {
/**
 * 获取N个集合的笛卡尔积
 *
 * 说明:假如传入的字符串为:"1,2,3==5,6==7,8"
 *  转换成字符串数组为:[[1, 2, 3], [5, 6], [7, 8]]
 *  a=[1, 2, 3]
 *  b=[5, 6]
 *  c=[7, 8]
 *  其大小分别为:a_length=3,b_length=2,c_length=2,
 *  目标list的总大小为:totalSize=3*2*2 = 12
 *  对每个子集a,b,c,进行循环次数=总记录数/(元素个数*后续集合的笛卡尔积个数)
 *  对a中的每个元素循环次数=总记录数/(元素个数*后续集合的笛卡尔积个数)=12/(3*4)=1次,每个元素每次循环打印次数:后续集合的笛卡尔积个数=2*2个
 *  对b中的每个元素循环次数=总记录数/(元素个数*后续集合的笛卡尔积个数)=12/(2*2)=3次,每个元素每次循环打印次数:后续集合的笛卡尔积个数=2个
 *  对c中的每个元素循环次数=总记录数/(元素个数*后续集合的笛卡尔积个数)=12/(2*1)=6次,每个元素每次循环打印次数:后续集合的笛卡尔积个数=1个
 *
 *  运行结果:
 *  [[1, 2, 3], [5, 6], [7, 8]]
  1,5,7,
  1,5,8,
  1,6,7,
  1,6,8,
  2,5,7,
  2,5,8,
  2,6,7,
  2,6,8,
  3,5,7,
  3,5,8,
  3,6,7,
  3,6,8]
  从结果中可以看到:
  a中的每个元素每个元素循环1次,每次打印4个
  b中的每个元素每个元素循环3次,每次打印2个
  c中的每个元素每个元素循环6次,每次打印1个
 *
 * @param args
 */
public static void main(String[] args) {
 // TODO Auto-generated method stub
 String str ="1,3,6,7==4,5,8,9==3,4==43,45,8,9==35,4";
 List<String> result = descartes(str);
 System.out.println(result);
}
@SuppressWarnings("rawtypes")
public static List<String> descartes(String str) {
 String[] list = str.split("==");
 List<List> strs = new ArrayList<List>();
 for(int i=0;i<list.length;i++){
 strs.add(Arrays.asList(list[i].split(",")));
 }
 System.out.println(strs);
 int total = 1;
 for(int i=0;i<strs.size();i++){
  total*=strs.get(i).size();
 }
 String[] mysesult = new String[total];
 int now = 1;
 //每个元素每次循环打印个数
 int itemLoopNum = 1;
 //每个元素循环的总次数
 int loopPerItem =1;
 for(int i=0;i<strs.size();i++){
  List temp = strs.get(i);
  now = now*temp.size();
  //目标数组的索引值
  int index=0;
  int currentSize = temp.size();
  itemLoopNum = total/now;
  loopPerItem = total/(itemLoopNum*currentSize);
  int myindex = 0;
  for(int j=0;j<temp.size();j++){
   //每个元素循环的总次数
   for(int k=0;k<loopPerItem;k++){
    if(myindex==temp.size())
     myindex=0;
    //每个元素每次循环打印个数
    for(int m=0;m<itemLoopNum;m++){
     mysesult[index]=(mysesult[index]==null?"":mysesult[index]+",")+((String)temp.get(myindex));
     index++;
    }
    myindex++;
   }
  }
 }
 return Arrays.asList(mysesult);
}
}

运行结果输出:

[[1, 3, 6, 7], [4, 5, 8, 9], [3, 4], [43, 45, 8, 9], [35, 4]]
[1,4,3,43,35, 1,4,3,43,4, 1,4,3,45,35, 1,4,3,45,4, 1,4,3,8,35, 1,4,3,8,4, 1,4,3,9,35, 1,4,3,9,4, 1,4,4,43,35, 1,4,4,43,4, 1,4,4,45,35, 1,4,4,45,4, 1,4,4,8,35, 1,4,4,8,4, 1,4,4,9,35, 1,4,4,9,4, 1,5,3,43,35, 1,5,3,43,4, 1,5,3,45,35, 1,5,3,45,4, 1,5,3,8,35, 1,5,3,8,4, 1,5,3,9,35, 1,5,3,9,4, 1,5,4,43,35, 1,5,4,43,4, 1,5,4,45,35, 1,5,4,45,4, 1,5,4,8,35, 1,5,4,8,4, 1,5,4,9,35, 1,5,4,9,4, 1,8,3,43,35, 1,8,3,43,4, 1,8,3,45,35, 1,8,3,45,4, 1,8,3,8,35, 1,8,3,8,4, 1,8,3,9,35, 1,8,3,9,4, 1,8,4,43,35, 1,8,4,43,4, 1,8,4,45,35, 1,8,4,45,4, 1,8,4,8,35, 1,8,4,8,4, 1,8,4,9,35, 1,8,4,9,4, 1,9,3,43,35, 1,9,3,43,4, 1,9,3,45,35, 1,9,3,45,4, 1,9,3,8,35, 1,9,3,8,4, 1,9,3,9,35, 1,9,3,9,4, 1,9,4,43,35, 1,9,4,43,4, 1,9,4,45,35, 1,9,4,45,4, 1,9,4,8,35, 1,9,4,8,4, 1,9,4,9,35, 1,9,4,9,4, 3,4,3,43,35, 3,4,3,43,4, 3,4,3,45,35, 3,4,3,45,4, 3,4,3,8,35, 3,4,3,8,4, 3,4,3,9,35, 3,4,3,9,4, 3,4,4,43,35, 3,4,4,43,4, 3,4,4,45,35, 3,4,4,45,4, 3,4,4,8,35, 3,4,4,8,4, 3,4,4,9,35, 3,4,4,9,4, 3,5,3,43,35, 3,5,3,43,4, 3,5,3,45,35, 3,5,3,45,4, 3,5,3,8,35, 3,5,3,8,4, 3,5,3,9,35, 3,5,3,9,4, 3,5,4,43,35, 3,5,4,43,4, 3,5,4,45,35, 3,5,4,45,4, 3,5,4,8,35, 3,5,4,8,4, 3,5,4,9,35, 3,5,4,9,4, 3,8,3,43,35, 3,8,3,43,4, 3,8,3,45,35, 3,8,3,45,4, 3,8,3,8,35, 3,8,3,8,4, 3,8,3,9,35, 3,8,3,9,4, 3,8,4,43,35, 3,8,4,43,4, 3,8,4,45,35, 3,8,4,45,4, 3,8,4,8,35, 3,8,4,8,4, 3,8,4,9,35, 3,8,4,9,4, 3,9,3,43,35, 3,9,3,43,4, 3,9,3,45,35, 3,9,3,45,4, 3,9,3,8,35, 3,9,3,8,4, 3,9,3,9,35, 3,9,3,9,4, 3,9,4,43,35, 3,9,4,43,4, 3,9,4,45,35, 3,9,4,45,4, 3,9,4,8,35, 3,9,4,8,4, 3,9,4,9,35, 3,9,4,9,4, 6,4,3,43,35, 6,4,3,43,4, 6,4,3,45,35, 6,4,3,45,4, 6,4,3,8,35, 6,4,3,8,4, 6,4,3,9,35, 6,4,3,9,4, 6,4,4,43,35, 6,4,4,43,4, 6,4,4,45,35, 6,4,4,45,4, 6,4,4,8,35, 6,4,4,8,4, 6,4,4,9,35, 6,4,4,9,4, 6,5,3,43,35, 6,5,3,43,4, 6,5,3,45,35, 6,5,3,45,4, 6,5,3,8,35, 6,5,3,8,4, 6,5,3,9,35, 6,5,3,9,4, 6,5,4,43,35, 6,5,4,43,4, 6,5,4,45,35, 6,5,4,45,4, 6,5,4,8,35, 6,5,4,8,4, 6,5,4,9,35, 6,5,4,9,4, 6,8,3,43,35, 6,8,3,43,4, 6,8,3,45,35, 6,8,3,45,4, 6,8,3,8,35, 6,8,3,8,4, 6,8,3,9,35, 6,8,3,9,4, 6,8,4,43,35, 6,8,4,43,4, 6,8,4,45,35, 6,8,4,45,4, 6,8,4,8,35, 6,8,4,8,4, 6,8,4,9,35, 6,8,4,9,4, 6,9,3,43,35, 6,9,3,43,4, 6,9,3,45,35, 6,9,3,45,4, 6,9,3,8,35, 6,9,3,8,4, 6,9,3,9,35, 6,9,3,9,4, 6,9,4,43,35, 6,9,4,43,4, 6,9,4,45,35, 6,9,4,45,4, 6,9,4,8,35, 6,9,4,8,4, 6,9,4,9,35, 6,9,4,9,4, 7,4,3,43,35, 7,4,3,43,4, 7,4,3,45,35, 7,4,3,45,4, 7,4,3,8,35, 7,4,3,8,4, 7,4,3,9,35, 7,4,3,9,4, 7,4,4,43,35, 7,4,4,43,4, 7,4,4,45,35, 7,4,4,45,4, 7,4,4,8,35, 7,4,4,8,4, 7,4,4,9,35, 7,4,4,9,4, 7,5,3,43,35, 7,5,3,43,4, 7,5,3,45,35, 7,5,3,45,4, 7,5,3,8,35, 7,5,3,8,4, 7,5,3,9,35, 7,5,3,9,4, 7,5,4,43,35, 7,5,4,43,4, 7,5,4,45,35, 7,5,4,45,4, 7,5,4,8,35, 7,5,4,8,4, 7,5,4,9,35, 7,5,4,9,4, 7,8,3,43,35, 7,8,3,43,4, 7,8,3,45,35, 7,8,3,45,4, 7,8,3,8,35, 7,8,3,8,4, 7,8,3,9,35, 7,8,3,9,4, 7,8,4,43,35, 7,8,4,43,4, 7,8,4,45,35, 7,8,4,45,4, 7,8,4,8,35, 7,8,4,8,4, 7,8,4,9,35, 7,8,4,9,4, 7,9,3,43,35, 7,9,3,43,4, 7,9,3,45,35, 7,9,3,45,4, 7,9,3,8,35, 7,9,3,8,4, 7,9,3,9,35, 7,9,3,9,4, 7,9,4,43,35, 7,9,4,43,4, 7,9,4,45,35, 7,9,4,45,4, 7,9,4,8,35, 7,9,4,8,4, 7,9,4,9,35, 7,9,4,9,4]

递归算法:


public static void fn(List<String[]> list,String[] arr,String str){
//迭代list
List<String> li = new ArrayList<String>();
 for(int i=0;i<list.size();i++){
  //取得当前的数组
  if(i==list.indexOf(arr)){
   //迭代数组
   System.out.println(arr.length);
   for(String st : arr){
    st = str + st;
    if(i<list.size()-1){
     fn(list,list.get(i+1),st);
    }else if(i==list.size()-1){
     li.add(st);
    }
   }
  }
 }
 for(int i = 0 ; i < li.size();i++ )
 {
  System.out.println(li.get(i));
 }
}

希望本文所述对大家java程序设计有所帮助。

来源:http://coconut-zhang.iteye.com/blog/1709547

标签:Java,笛卡尔积,算法
0
投稿

猜你喜欢

  • C#获取Description特性的扩展类详解

    2022-06-04 13:27:24
  • C#调用QQ_Mail发送邮件实例代码两例

    2023-11-10 17:27:05
  • servlet3文件上传操作

    2023-02-05 18:27:44
  • android中实现OkHttp下载文件并带进度条

    2022-04-11 17:20:20
  • c# 日历控件的实现

    2022-08-21 11:02:22
  • 如何解决android Toast重复显示

    2023-08-19 00:36:56
  • Java创建型设计模式之建造者模式详解

    2023-10-09 17:25:13
  • 教你5分钟轻松搞定内存字节对齐

    2022-05-03 08:35:10
  • C# 微信支付回调验签处理的实现

    2021-07-27 01:57:34
  • Android GestureDetector实现手势滑动效果

    2023-10-01 04:37:50
  • C#实现视频的批量剪辑功能

    2023-07-15 06:18:30
  • 详解Java设计模式之抽象工厂模式

    2022-09-29 17:00:34
  • c#固定长度的随机字符串例子

    2021-10-24 06:11:10
  • Java零基础精通方法篇

    2021-08-29 12:07:58
  • mybatis-plus 如何判断参数是否为空并作为查询条件

    2022-09-14 22:05:03
  • Java深入探究关键字abstract的使用

    2023-08-03 07:48:20
  • Mybatis的详细使用教程

    2022-02-15 21:08:20
  • MyBatis持久层框架的用法知识小结

    2022-05-21 17:12:55
  • Android 通过onDraw实现在View中绘图操作的示例

    2023-07-14 02:15:38
  • 每日六道java新手入门面试题,通往自由的道路

    2023-11-13 16:22:29
  • asp之家 软件编程 m.aspxhome.com