Java实现二叉搜索树的插入、删除功能
作者:划水的鱼dm 时间:2023-07-15 20:54:53
二叉树的结构
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {
}
TreeNode(int val) {
this.val = val;
}
}
中序遍历
中序遍历:从根节点开始遍历,遍历顺序是:左子树->当前节点->右子树,在中序遍历中,对每个节点来说:
只有当它的左子树都被遍历过了(或者没有左子树),它才会被遍历到。
在遍历右子树之前,一定会先遍历当前节点。
中序遍历得到的第一个节点是没有左子树的(也许是叶子节点,也许有右子树)
同理,中序遍历的最后一个节点没有右子树
代码递归实现
List<TreeNode> list = new ArrayList<>();
public void inorder_traversal(TreeNode root) {
if (root == null) {
return;
}
if (root.left != null) {
inorder_traversal(root.left);
}
list.add(root);
if (root.right != null) {
inorder_traversal(root.right);
}
}
二叉搜索树的定义
对每一个节点而言,左子树的所有节点小于它,右子树的所有节点大于它
二叉树中每一个节点的值都不相同
中序遍历的结果是升序的
这些定义决定了它的优点:查找效率快,因为二叉搜索树查找一个值时,可以通过二分查找的方式,平均时间复杂度为log2(n),n是二叉树的层树
下图就是一个标准的二叉搜索树,右子树比根节点大,左子树比根节点小
查找节点
给定一个值,使用循环在二叉搜索树中查找,找到该节点为止
从根节点开始,不断循环进行比较
给定值大于当前节点,就找右子树,小于就找左子树,值相等就是找到了节点
代码实现如下
public TreeNode search(TreeNode root, int val) {
// 节点不为空,且不等于特定值
while(root != null && root.val != val){
if(root.val > val){
root = root.left;
}else{
root = root.right;
}
}
return root;
}
添加节点
设要添加的节点为b, 二叉搜索树的添加是将b作为叶子节点加入到其中,因为叶子节点的增加比较简单。
跟搜索过程类似,从根节点开始,不断循环找,找到一个适合新节点的位置
b值比当前节点大(小),并且当前节点的右(左)子树为空,将b插入到当前节点的右(左)子树中
如果当前节点的子树不为空,继续往下寻找
使用一个随着搜索过程,不断更新的pre节点作为b的父节点,由pre节点添加b
有可能要插入节点的二叉树是一颗空树,创建一个新的二叉树
如果二叉搜索树中已经有跟b相等的值,不需要进行添加
public TreeNode insertInto(TreeNode root, int val) {
if (root == null) {
// 树为空树的情况
return new TreeNode(val);
}
// 一个临时节点指向根节点,用于返回值
TreeNode tmp = root;
TreeNode pre = root;
while (root != null && root.val != val) {
// 保存父节点
pre = root;
if (val > root.val) {
root = root.right;
} else {
root = root.left;
}
}
// 通过父节点添加
if (val > pre.val) {
pre.right = new TreeNode(val);
} else {
pre.left = new TreeNode(val);
}
return tmp;
}
删除节点
删除过程比较复杂,先设二叉搜索树要删除的节点为a,a有以下三种情况
a为叶子节点
a有一个子节点
a有两个子节点删除叶子节点
过程类似搜索节点,找到到a后,通过它的父节点删除,并且叶子节点的删除不影响树的性质
有一个子节点的节点
要将a删除,并且保留a的子节点,让它的父节点连接它的子节点即可,因为a的子节点 与 a的父节点 关系 == a与 a的父节点 关系,所以不改变树的性质
二叉搜索树的定义决定了:对于每一个节点而言,它 大于(小于) 它的父节点,那么它的子节点 大于(小于) 它的父节点
过程像这张图一样
删除有两个子节点的节点
我们可以通过交换节点的方式,让a 和 只有一个子节点的节点 交换,删除a的操作就变成了上面第二种情况。
我们知道中序遍历二叉搜索树的结果是升序的,如果要交换,肯定要找中序遍历在a左右两边的节点(因为值交换之后也满足二叉搜索树的定义)
中序遍历的后(前)一个节点是右(左)子树中序遍历的第一个(最后一个)节点,而且它们都只有一个子节点
过程跟下面这张图类似(a的值与中序遍历的后一个节点交换,并删除这个节点)
代码实现
public TreeNode deleteNode(TreeNode root, int key) {
TreeNode tmp = root;
TreeNode pre = root;
// 寻找要删除的节点
while (root != null && root.val != key) {
pre = root;
if (key > root.val) {
root = root.right;
} else {
root = root.left;
}
}
// 找不到符合的节点值
if (root == null) {
return tmp;
}
// 只有一个子节点或者没有子节点的情况
if (root.left == null || root.right == null) {
if (root.left == null) {
// 要删除的是根节点,返回它的子节点
if (root == tmp) {
return root.right;
}
// 使用父节点连接子节点,实现删除当前节点
if (pre.left == root) {
pre.left = root.right;
} else {
pre.right = root.right;
}
} else {
if (root == tmp) {
return root.left;
}
if (pre.left == root) {
pre.left = root.left;
} else {
pre.right = root.left;
}
}
return tmp;
}
// 第一种方式
// 寻找中序遍历的后一个节点,也就是右子树进行中序遍历的第一个节点,右子树的最左节点
pre = root;
TreeNode rootRight = root.right;
while (rootRight.left != null) {
pre = rootRight;
rootRight = rootRight.left;
}
// 节点的值进行交换
int tmpVal = rootRight.val;
rootRight.val = root.val;
root.val = tmpVal;
// 中序遍历的第一个节点肯定是没有左子树的,但是可能有右子树,将右子树连接到父节点上(相当于删除有一个子节点的节点)
if (pre.left == rootRight) {
pre.left = rootRight.right;
}else {
pre.right = rootRight.right;
}
// 第二种方式
// 寻找中序遍历的前一个节点,也就是左子树进行中序遍历的最后一个节点,左子树的最右节点
// pre = root;
// TreeNode rootLeft = root.left;
// while (rootLeft.right != null){
// pre = rootLeft;
// rootLeft = rootLeft.right;
// }
//
// int tmpVal = rootLeft.val;
// rootLeft.val = root.val;
// root.val = tmpVal;
//
// // 中序遍历的最后一个节点肯定是没有右子树的,但是可能有左子树,将左子树连接到父节点上(相当于删除有一个子节点的节点)
// if (pre.left == rootLeft) {
// pre.left = rootLeft.left;
// }else {
// pre.right = rootLeft.left;
// }
return tmp;
}
来源:https://www.cnblogs.com/davidFB/p/15801763.html