Java多线程之彻底搞懂线程池

作者:孙强 时间:2023-12-18 23:54:09 

1 线程池的优势

总体来说,线程池有如下的优势:

(1)降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。

(2)提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。

(3)提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

2 线程池的使用

线程池的真正实现类是 ThreadPoolExecutor,其构造方法有如下4种:

public ThreadPoolExecutor(int corePoolSize,
                         int maximumPoolSize,
                         long keepAliveTime,
                         TimeUnit unit,
                         BlockingQueue<Runnable> workQueue) {
   this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
        Executors.defaultThreadFactory(), defaultHandler);
}

public ThreadPoolExecutor(int corePoolSize,
                         int maximumPoolSize,
                         long keepAliveTime,
                         TimeUnit unit,
                         BlockingQueue<Runnable> workQueue,
                         ThreadFactory threadFactory) {
   this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
        threadFactory, defaultHandler);
}

public ThreadPoolExecutor(int corePoolSize,
                         int maximumPoolSize,
                         long keepAliveTime,
                         TimeUnit unit,
                         BlockingQueue<Runnable> workQueue,
                         RejectedExecutionHandler handler) {
   this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
        Executors.defaultThreadFactory(), handler);
}

public ThreadPoolExecutor(int corePoolSize,
                         int maximumPoolSize,
                         long keepAliveTime,
                         TimeUnit unit,
                         BlockingQueue<Runnable> workQueue,
                         ThreadFactory threadFactory,
                         RejectedExecutionHandler handler) {
   if (corePoolSize < 0 ||
       maximumPoolSize <= 0 ||
       maximumPoolSize < corePoolSize ||
       keepAliveTime < 0)
       throw new IllegalArgumentException();
   if (workQueue == null || threadFactory == null || handler == null)
       throw new NullPointerException();
   this.corePoolSize = corePoolSize;
   this.maximumPoolSize = maximumPoolSize;
   this.workQueue = workQueue;
   this.keepAliveTime = unit.toNanos(keepAliveTime);
   this.threadFactory = threadFactory;
   this.handler = handler;
}

可以看到,其需要如下几个参数:

  • corePoolSize(必需):核心线程数。默认情况下,核心线程会一直存活,但是当将 allowCoreThreadTimeout 设置为 true 时,核心线程也会超时回收。

  • maximumPoolSize(必需):线程池所能容纳的最大线程数。当活跃线程数达到该数值后,后续的新任务将会阻塞。

  • keepAliveTime(必需):线程闲置超时时长。如果超过该时长,非核心线程就会被回收。如果将 allowCoreThreadTimeout 设置为 true 时,核心线程也会超时回收。

  • unit(必需):指定 keepAliveTime 参数的时间单位。常用的有:TimeUnit.MILLISECONDS(毫秒)、TimeUnit.SECONDS(秒)、TimeUnit.MINUTES(分)。

  • workQueue(必需):任务队列。通过线程池的 execute() 方法提交的 Runnable 对象将存储在该参数中。其采用阻塞队列实现。

  • threadFactory(可选):线程工厂。用于指定为线程池创建新线程的方式。

 线程池的使用流程如下:

// 创建线程池
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(CORE_POOL_SIZE,
                                            MAXIMUM_POOL_SIZE,
                                            KEEP_ALIVE,
                                            TimeUnit.SECONDS,
                                            sPoolWorkQueue,
                                            sThreadFactory);
// 向线程池提交任务
threadPool.execute(new Runnable() {
   @Override
   public void run() {
       ... // 线程执行的任务
   }
});
// 关闭线程池
threadPool.shutdown(); // 设置线程池的状态为SHUTDOWN,然后中断所有没有正在执行任务的线程
threadPool.shutdownNow(); // 设置线程池的状态为 STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表

3 线程池的工作原理

下面来描述一下线程池工作的原理,同时对上面的参数有一个更深的了解。其工作原理流程图如下:

Java多线程之彻底搞懂线程池

通过上图,相信大家已经对所有参数有个了解了。下面再对任务队列、线程工厂和拒绝策略做更多的说明。

4 线程池的参数

4.1 任务队列(workQueue)

任务队列是基于阻塞队列实现的,即采用生产者消费者模式,在 Java 中需要实现 BlockingQueue 接口。但 Java 已经为我们提供了 7 种阻塞队列的实现:

  1. ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列(数组结构可配合指针实现一个环形队列)。

  2. LinkedBlockingQueue: 一个由链表结构组成的有界阻塞队列,在未指明容量时,容量默认为 Integer.MAX_VALUE。

  3. PriorityBlockingQueue: 一个支持优先级排序的 * 阻塞队列,对元素没有要求,可以实现 Comparable 接口也可以提供 Comparator 来对队列中的元素进行比较。跟时间没有任何关系,仅仅是按照优先级取任务。

  4. DelayQueue:类似于PriorityBlockingQueue,是二叉堆实现的 * 优先级阻塞队列。要求元素都实现 Delayed 接口,通过执行时延从队列中提取任务,时间没到任务取不出来。

  5. SynchronousQueue: 一个不存储元素的阻塞队列,消费者线程调用 take() 方法的时候就会发生阻塞,直到有一个生产者线程生产了一个元素,消费者线程就可以拿到这个元素并返回;生产者线程调用 put() 方法的时候也会发生阻塞,直到有一个消费者线程消费了一个元素,生产者才会返回。

  6. LinkedBlockingDeque: 使用双向队列实现的有界双端阻塞队列。双端意味着可以像普通队列一样 FIFO(先进先出),也可以像栈一样 FILO(先进后出)。

  7. LinkedTransferQueue: 它是ConcurrentLinkedQueue、LinkedBlockingQueue 和 SynchronousQueue 的结合体,但是把它用在 ThreadPoolExecutor 中,和 LinkedBlockingQueue 行为一致,但是是 * 的阻塞队列。

 注意有界队列和 * 队列的区别:如果使用有界队列,当队列饱和时并超过最大线程数时就会执行拒绝策略;而如果使用 * 队列,因为任务队列永远都可以添加任务,所以设置 maximumPoolSize 没有任何意义。

4.2 线程工厂(threadFactory)

线程工厂指定创建线程的方式,需要实现 ThreadFactory 接口,并实现 newThread(Runnable r) 方法。该参数可以不用指定,Executors 框架已经为我们实现了一个默认的线程工厂:

/**
* The default thread factory.
*/
private static class DefaultThreadFactory implements ThreadFactory {
   private static final AtomicInteger poolNumber = new AtomicInteger(1);
   private final ThreadGroup group;
   private final AtomicInteger threadNumber = new AtomicInteger(1);
   private final String namePrefix;

DefaultThreadFactory() {
       SecurityManager s = System.getSecurityManager();
       group = (s != null) ? s.getThreadGroup() :
                             Thread.currentThread().getThreadGroup();
       namePrefix = "pool-" +
                     poolNumber.getAndIncrement() +
                    "-thread-";
   }

public Thread newThread(Runnable r) {
       Thread t = new Thread(group, r,
                             namePrefix + threadNumber.getAndIncrement(),
                             0);
       if (t.isDaemon())
           t.setDaemon(false);
       if (t.getPriority() != Thread.NORM_PRIORITY)
           t.setPriority(Thread.NORM_PRIORITY);
       return t;
   }
}

4.3 拒绝策略(handler)

当线程池的线程数达到最大线程数时,需要执行拒绝策略。拒绝策略需要实现 RejectedExecutionHandler 接口,并实现 rejectedExecution(Runnable r, ThreadPoolExecutor executor) 方法。不过 Executors 框架已经为我们实现了 4 种拒绝策略:

  1. AbortPolicy(默认):丢弃任务并抛出 RejectedExecutionException 异常。

  2. CallerRunsPolicy:由调用线程处理该任务。

  3. DiscardPolicy:丢弃任务,但是不抛出异常。可以配合这种模式进行自定义的处理方式。

  4. DiscardOldestPolicy:丢弃队列最早的未处理任务,然后重新尝试执行任务。

5 功能线程池

嫌上面使用线程池的方法太麻烦?其实Executors已经为我们封装好了 4 种常见的功能线程池,如下:

  1. 定长线程池(FixedThreadPool)

  2. 定时线程池(ScheduledThreadPool )

  3. 可缓存线程池(CachedThreadPool)

  4. 单线程化线程池(SingleThreadExecutor)

5.1 定长线程池(FixedThreadPool)

创建方法的源码:

public static ExecutorService newFixedThreadPool(int nThreads) {
   return new ThreadPoolExecutor(nThreads, nThreads,
                                 0L, TimeUnit.MILLISECONDS,
                                 new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
   return new ThreadPoolExecutor(nThreads, nThreads,
                                 0L, TimeUnit.MILLISECONDS,
                                 new LinkedBlockingQueue<Runnable>(),
                                 threadFactory);
}
  • 特点:只有核心线程,线程数量固定,执行完立即回收,任务队列为链表结构的有界队列。

  • 应用场景:控制线程最大并发数。

 使用示例:

// 1. 创建定长线程池对象 & 设置线程池线程数量固定为3
ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
// 2. 创建好Runnable类线程对象 & 需执行的任务
Runnable task =new Runnable(){
 public void run() {
    System.out.println("执行任务啦");
 }
};
// 3. 向线程池提交任务
fixedThreadPool.execute(task);

5.2 定时线程池(ScheduledThreadPool )

创建方法的源码:

private static final long DEFAULT_KEEPALIVE_MILLIS = 10L;

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
   return new ScheduledThreadPoolExecutor(corePoolSize);
}
public ScheduledThreadPoolExecutor(int corePoolSize) {
   super(corePoolSize, Integer.MAX_VALUE,
         DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
         new DelayedWorkQueue());
}

public static ScheduledExecutorService newScheduledThreadPool(
       int corePoolSize, ThreadFactory threadFactory) {
   return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
public ScheduledThreadPoolExecutor(int corePoolSize,
                                  ThreadFactory threadFactory) {
   super(corePoolSize, Integer.MAX_VALUE,
         DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
         new DelayedWorkQueue(), threadFactory);
}
  • 特点:核心线程数量固定,非核心线程数量无限,执行完闲置 10ms 后回收,任务队列为延时阻塞队列。

  • 应用场景:执行定时或周期性的任务。

 使用示例:

// 1. 创建 定时线程池对象 & 设置线程池线程数量固定为5
ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);
// 2. 创建好Runnable类线程对象 & 需执行的任务
Runnable task =new Runnable(){
 public void run() {
    System.out.println("执行任务啦");
 }
};
// 3. 向线程池提交任务
scheduledThreadPool.schedule(task, 1, TimeUnit.SECONDS); // 延迟1s后执行任务
scheduledThreadPool.scheduleAtFixedRate(task,10,1000,TimeUnit.MILLISECONDS);// 延迟10ms后、每隔1000ms执行任务

5.3 可缓存线程池(CachedThreadPool)

创建方法的源码:

public static ExecutorService newCachedThreadPool() {
   return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                 60L, TimeUnit.SECONDS,
                                 new SynchronousQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
   return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                 60L, TimeUnit.SECONDS,
                                 new SynchronousQueue<Runnable>(),
                                 threadFactory);
}
  • 特点:无核心线程,非核心线程数量无限,执行完闲置 60s 后回收,任务队列为不存储元素的阻塞队列。

  • 应用场景:执行大量、耗时少的任务。

 使用示例:

// 1. 创建可缓存线程池对象
ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
// 2. 创建好Runnable类线程对象 & 需执行的任务
Runnable task =new Runnable(){
 public void run() {
    System.out.println("执行任务啦");
 }
};
// 3. 向线程池提交任务
cachedThreadPool.execute(task);

5.4 单线程化线程池(SingleThreadExecutor)

创建方法的源码:

public static ExecutorService newSingleThreadExecutor() {
   return new FinalizableDelegatedExecutorService
       (new ThreadPoolExecutor(1, 1,
                               0L, TimeUnit.MILLISECONDS,
                               new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
   return new FinalizableDelegatedExecutorService
       (new ThreadPoolExecutor(1, 1,
                               0L, TimeUnit.MILLISECONDS,
                               new LinkedBlockingQueue<Runnable>(),
                               threadFactory));
}
  • 特点:只有 1 个核心线程,无非核心线程,执行完立即回收,任务队列为链表结构的有界队列。

  • 应用场景:不适合并发但可能引起 IO 阻塞性及影响 UI 线程响应的操作,如数据库操作、文件操作等

 使用示例:

// 1. 创建单线程化线程池
ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
// 2. 创建好Runnable类线程对象 & 需执行的任务
Runnable task =new Runnable(){
 public void run() {
    System.out.println("执行任务啦");
 }
};
// 3. 向线程池提交任务
singleThreadExecutor.execute(task);

5.5 对比

Java多线程之彻底搞懂线程池

6 总结

Executors 的 4 个功能线程池虽然方便,但现在已经不建议使用了,而是建议直接通过使用 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。

其实 Executors 的 4 个功能线程有如下弊端:

  • FixedThreadPool 和 SingleThreadExecutor:主要问题是堆积的请求处理队列均采用 LinkedBlockingQueue,可能会耗费非常大的内存,甚至 OOM。

  • CachedThreadPool 和 ScheduledThreadPool:主要问题是线程数最大数是 Integer.MAX_VALUE,可能会创建数量非常多的线程,甚至 OOM。

来源:https://blog.csdn.net/u013541140/article/details/95225769

标签:Java,多线程,线程池
0
投稿

猜你喜欢

  • mybatis原理概述入门教程

    2023-10-08 13:10:57
  • Android RxJava与Retrofit结合使用详解

    2021-10-19 20:10:53
  • JMeter中的后端监听器的实现

    2022-07-24 17:58:35
  • Android下Activity全屏显示实现方法

    2022-12-17 19:57:56
  • C#泛型详解及关键字作用

    2023-04-07 20:23:12
  • ListView的View回收引起的checkbox状态改变监听等问题解决方案

    2023-07-26 17:33:45
  • C#生成带二维码的专属微信公众号推广海报实例代码

    2023-04-04 23:30:57
  • Android实现滑动选择控件实例代码

    2022-04-13 14:17:31
  • 如何把idea中的项目导入github仓库中(图文详解)

    2023-01-20 08:42:32
  • C#延时函数的使用说明

    2023-10-11 19:58:34
  • 将项目上传到Maven中央仓库(2023最新版)

    2022-11-24 18:25:12
  • Android代码检查规则Lint的自定义与应用详解

    2021-11-04 22:13:43
  • 深入理解Java对象复制

    2021-10-06 05:39:27
  • Java实现简易界面通讯录

    2023-02-09 20:12:59
  • WeakHashMap 和 HashMap 区别及使用场景

    2022-06-25 02:16:15
  • Spring生命周期回调与容器扩展详解

    2023-04-05 16:26:31
  • 直接在线预览Word、Excel、TXT文件之ASP.NET

    2021-10-07 15:37:54
  • Java Swing中JList选择事件监听器ListSelectionListener用法示例

    2021-06-21 22:52:01
  • Java基础之Stream流原理与用法详解

    2021-06-07 22:16:05
  • Android使用Xutils3进行断点下载的实例

    2021-08-13 21:59:27
  • asp之家 软件编程 m.aspxhome.com