Keras 使用 Lambda层详解

作者:驿无边 时间:2021-08-11 20:12:40 

我就废话不多说了,大家还是直接看代码吧!


from tensorflow.python.keras.models import Sequential, Model
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout, Conv2DTranspose, Lambda, Input, Reshape, Add, Multiply
from tensorflow.python.keras.optimizers import Adam

def deconv(x):
 height = x.get_shape()[1].value
 width = x.get_shape()[2].value

new_height = height*2
 new_width = width*2

x_resized = tf.image.resize_images(x, [new_height, new_width], tf.image.ResizeMethod.NEAREST_NEIGHBOR)

return x_resized

def Generator(scope='generator'):
 imgs_noise = Input(shape=inputs_shape)
 x = Conv2D(filters=32, kernel_size=(9,9), strides=(1,1), padding='same', activation='relu')(imgs_noise)
 x = Conv2D(filters=64, kernel_size=(3,3), strides=(2,2), padding='same', activation='relu')(x)
 x = Conv2D(filters=128, kernel_size=(3,3), strides=(2,2), padding='same', activation='relu')(x)

x1 = Conv2D(filters=128, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu')(x)
 x1 = Conv2D(filters=128, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu')(x1)
 x2 = Add()([x1, x])

x3 = Conv2D(filters=128, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu')(x2)
 x3 = Conv2D(filters=128, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu')(x3)
 x4 = Add()([x3, x2])

x5 = Conv2D(filters=128, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu')(x4)
 x5 = Conv2D(filters=128, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu')(x5)
 x6 = Add()([x5, x4])

x = MaxPool2D(pool_size=(2,2))(x6)

x = Lambda(deconv)(x)
 x = Conv2D(filters=64, kernel_size=(3, 3), strides=(1,1), padding='same',activation='relu')(x)
 x = Lambda(deconv)(x)
 x = Conv2D(filters=32, kernel_size=(3, 3), strides=(1,1), padding='same',activation='relu')(x)
 x = Lambda(deconv)(x)
 x = Conv2D(filters=3, kernel_size=(3, 3), strides=(1, 1), padding='same',activation='tanh')(x)

x = Lambda(lambda x: x+1)(x)
 y = Lambda(lambda x: x*127.5)(x)

model = Model(inputs=imgs_noise, outputs=y)
 model.summary()

return model

my_generator = Generator()
my_generator.compile(loss='binary_crossentropy', optimizer=Adam(0.7, decay=1e-3), metrics=['accuracy'])

补充知识:含有Lambda自定义层keras模型,保存遇到的问题及解决方案

一,许多应用,keras含有的层已经不能满足要求,需要透过Lambda自定义层来实现一些layer,这个情况下,只能保存模型的权重,无法使用model.save来保存模型。保存时会报

TypeError: can't pickle _thread.RLock objects

Keras 使用 Lambda层详解

二,解决方案,为了便于后续的部署,可以转成tensorflow的PB进行部署。


from keras.models import load_model
import tensorflow as tf
import os, sys
from keras import backend as K
from tensorflow.python.framework import graph_util, graph_io

def h5_to_pb(h5_weight_path, output_dir, out_prefix="output_", log_tensorboard=True):
 if not os.path.exists(output_dir):
   os.mkdir(output_dir)
 h5_model = build_model()
 h5_model.load_weights(h5_weight_path)
 out_nodes = []
 for i in range(len(h5_model.outputs)):
   out_nodes.append(out_prefix + str(i + 1))
   tf.identity(h5_model.output[i], out_prefix + str(i + 1))
 model_name = os.path.splitext(os.path.split(h5_weight_path)[-1])[0] + '.pb'
 sess = K.get_session()
 init_graph = sess.graph.as_graph_def()
 main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes)
 graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False)
 if log_tensorboard:
   from tensorflow.python.tools import import_pb_to_tensorboard
   import_pb_to_tensorboard.import_to_tensorboard(os.path.join(output_dir, model_name), output_dir)

def build_model():
 inputs = Input(shape=(784,), name='input_img')
 x = Dense(64, activation='relu')(inputs)
 x = Dense(64, activation='relu')(x)
 y = Dense(10, activation='softmax')(x)
 h5_model = Model(inputs=inputs, outputs=y)
 return h5_model

if __name__ == '__main__':
 if len(sys.argv) == 3:
   # usage: python3 h5_to_pb.py h5_weight_path output_dir
   h5_to_pb(h5_weight_path=sys.argv[1], output_dir=sys.argv[2])

来源:https://blog.csdn.net/a4775019136/article/details/99336591

标签:Keras,Lambda
0
投稿

猜你喜欢

  • 解决Pandas to_json()中文乱码,转化为json数组的问题

    2023-12-05 19:06:33
  • JavaScript常见数组方法之如何转置矩阵

    2024-04-17 10:37:41
  • python 生成xml文件,以及美化的实例代码

    2023-05-14 23:01:22
  • 简单的XML操作:XML文件创建

    2008-04-25 10:31:00
  • jQuery方法扩展:type, toJSON, evalJSON

    2009-02-15 12:42:00
  • TensorFlow的自动求导原理分析

    2023-06-14 15:22:02
  • Pycharm快捷键配置详细整理

    2021-06-25 05:46:17
  • Javascript 同时提交多个Web表单的方法

    2024-04-19 10:06:45
  • vue+Element-ui实现分页效果

    2024-04-26 17:38:17
  • 解决python 找不到module的问题

    2022-08-05 07:33:25
  • 宽屏不是用来阅读的

    2009-04-05 15:59:00
  • 使用vue实现加载页

    2024-05-03 15:11:37
  • python 制作本地应用搜索工具

    2023-03-25 02:16:50
  • Python Xml文件添加字节属性的方法

    2023-08-27 03:48:31
  • Python3实现转换Image图片格式

    2021-06-06 21:04:25
  • CentOS 7中安装mysql server的步骤分享

    2024-01-20 13:33:56
  • kali中python版本的切换方法

    2022-03-03 17:53:45
  • 判断数据库表是否存在以及修改表名的方法

    2024-01-22 09:21:24
  • C#实现根据实体类自动创建数据库表

    2024-01-12 13:23:29
  • pandas提升计算效率的一些方法汇总

    2023-12-01 00:08:04
  • asp之家 网络编程 m.aspxhome.com