Pytorch 实现focal_loss 多类别和二分类示例

作者:Kingslayer_ 时间:2021-09-16 17:53:36 

我就废话不多说了,直接上代码吧!


import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

# 支持多分类和二分类
class FocalLoss(nn.Module):
 """
 This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
 'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
   Focal_Loss= -1*alpha*(1-pt)^gamma*log(pt)
 :param num_class:
 :param alpha: (tensor) 3D or 4D the scalar factor for this criterion
 :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
         focus on hard misclassified example
 :param smooth: (float,double) smooth value when cross entropy
 :param balance_index: (int) balance class index, should be specific when alpha is float
 :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
 """

def __init__(self, num_class, alpha=None, gamma=2, balance_index=-1, smooth=None, size_average=True):
   super(FocalLoss, self).__init__()
   self.num_class = num_class
   self.alpha = alpha
   self.gamma = gamma
   self.smooth = smooth
   self.size_average = size_average

if self.alpha is None:
     self.alpha = torch.ones(self.num_class, 1)
   elif isinstance(self.alpha, (list, np.ndarray)):
     assert len(self.alpha) == self.num_class
     self.alpha = torch.FloatTensor(alpha).view(self.num_class, 1)
     self.alpha = self.alpha / self.alpha.sum()
   elif isinstance(self.alpha, float):
     alpha = torch.ones(self.num_class, 1)
     alpha = alpha * (1 - self.alpha)
     alpha[balance_index] = self.alpha
     self.alpha = alpha
   else:
     raise TypeError('Not support alpha type')

if self.smooth is not None:
     if self.smooth < 0 or self.smooth > 1.0:
       raise ValueError('smooth value should be in [0,1]')

def forward(self, input, target):
   logit = F.softmax(input, dim=1)

if logit.dim() > 2:
     # N,C,d1,d2 -> N,C,m (m=d1*d2*...)
     logit = logit.view(logit.size(0), logit.size(1), -1)
     logit = logit.permute(0, 2, 1).contiguous()
     logit = logit.view(-1, logit.size(-1))
   target = target.view(-1, 1)

# N = input.size(0)
   # alpha = torch.ones(N, self.num_class)
   # alpha = alpha * (1 - self.alpha)
   # alpha = alpha.scatter_(1, target.long(), self.alpha)
   epsilon = 1e-10
   alpha = self.alpha
   if alpha.device != input.device:
     alpha = alpha.to(input.device)

idx = target.cpu().long()
   one_hot_key = torch.FloatTensor(target.size(0), self.num_class).zero_()
   one_hot_key = one_hot_key.scatter_(1, idx, 1)
   if one_hot_key.device != logit.device:
     one_hot_key = one_hot_key.to(logit.device)

if self.smooth:
     one_hot_key = torch.clamp(
       one_hot_key, self.smooth, 1.0 - self.smooth)
   pt = (one_hot_key * logit).sum(1) + epsilon
   logpt = pt.log()

gamma = self.gamma

alpha = alpha[idx]
   loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt

if self.size_average:
     loss = loss.mean()
   else:
     loss = loss.sum()
   return loss

class BCEFocalLoss(torch.nn.Module):
 """
 二分类的Focalloss alpha 固定
 """
 def __init__(self, gamma=2, alpha=0.25, reduction='elementwise_mean'):
   super().__init__()
   self.gamma = gamma
   self.alpha = alpha
   self.reduction = reduction

def forward(self, _input, target):
   pt = torch.sigmoid(_input)
   alpha = self.alpha
   loss = - alpha * (1 - pt) ** self.gamma * target * torch.log(pt) - \
       (1 - alpha) * pt ** self.gamma * (1 - target) * torch.log(1 - pt)
   if self.reduction == 'elementwise_mean':
     loss = torch.mean(loss)
   elif self.reduction == 'sum':
     loss = torch.sum(loss)
   return loss

来源:https://blog.csdn.net/qq_33278884/article/details/91572173

标签:Pytorch,focal,loss,多类别,二分类
0
投稿

猜你喜欢

  • Python实现清理微信僵尸粉功能示例【基于itchat模块】

    2021-10-29 20:45:46
  • python神经网络编程实现手写数字识别

    2021-08-31 16:08:14
  • 带你深入了解MySQL数据库系统参数的优化

    2009-03-06 17:58:00
  • 智能录入表格[适合BS模式项目的录入页面]

    2008-03-09 19:02:00
  • Jupyter notebook无法导入第三方模块的解决方式

    2023-05-23 08:28:53
  • 基于python实现MQTT发布订阅过程原理解析

    2023-05-06 14:45:14
  • Python利用memory_profiler查看内存占用情况

    2022-05-24 08:55:29
  • 基于Python生成个性二维码过程详解

    2021-08-05 13:04:38
  • python中的各种运算符介绍

    2021-08-09 12:49:04
  • Python实现新版正方系统滑动验证码识别

    2022-11-08 09:14:32
  • Python之lambda匿名函数及map和filter的用法

    2021-01-14 02:11:18
  • vue.js实现日历插件使用方法详解

    2024-05-13 09:38:43
  • golang实现http服务器处理静态文件示例

    2024-05-21 10:22:17
  • Sql Server 开窗函数Over()的使用实例详解

    2024-01-17 14:34:33
  • pytorch1.0中torch.nn.Conv2d用法详解

    2023-07-17 10:53:48
  • 教你用Python实现简易版学生信息管理系统(含源码)

    2022-07-21 23:40:00
  • 用python爬虫爬取CSDN博主信息

    2023-06-13 08:11:10
  • python 对给定可迭代集合统计出现频率,并排序的方法

    2023-02-10 17:28:47
  • Ubuntu 16.04/18.04 安装Pycharm及Ipython的教程

    2023-11-03 03:49:29
  • ASP名次排列函数

    2008-07-20 13:42:00
  • asp之家 网络编程 m.aspxhome.com