基于Python的身份证验证识别和数据处理详解
作者:郎志刚 时间:2021-04-22 04:43:09
根据GB11643-1999公民身份证号码是特征组合码,由十七位数字本体码和一位数字校验码组成,排列顺序从左至右依次为:
六位数字地址码八位数字出生日期码三位数字顺序码一位数字校验码(数字10用罗马X表示)
校验系统:
校验码采用ISO7064:1983,MOD11-2校验码系统(图为校验规则样例)
用身份证号的前17位的每一位号码字符值分别乘上对应的加权因子值,得到的结果求和后对11进行取余,最后的结果放到表2检验码字符值..换算关系表中得出最后的一位身份证号码
代码:
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert BERT checkpoint."""
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
# Initialise PyTorch model
config = BertConfig.from_json_file(bert_config_file)
print("Building PyTorch model from configuration: {}".format(str(config)))
model = BertForPreTraining(config)
# Load weights from tf checkpoint
load_tf_weights_in_bert(model, config, tf_checkpoint_path)
# Save pytorch-model
print("Save PyTorch model to {}".format(pytorch_dump_path))
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
来源:https://www.cnblogs.com/langzhig/archive/2020/11/13/13969958.html
标签:python,身份验证识别,数据处理
0
投稿
猜你喜欢
MySQL 有输入输出参数的存储过程实例
2024-01-24 23:00:01
使用简单工厂模式来进行Python的设计模式编程
2021-02-17 11:53:50
Django 登陆验证码和中间件的实现
2021-08-12 10:26:18
python使用scapy模块实现ARP扫描的过程
2023-07-16 11:55:26
python 安装virtualenv和virtualenvwrapper的方法
2023-04-23 11:27:33
python 基本数据类型占用内存空间大小的实例
2021-08-10 21:59:03
MySQL执行计划的深入分析
2024-01-19 18:44:16
python中几种自动微分库解析
2022-12-20 18:24:02
一起来学习Python的元组和列表
2023-07-23 02:43:32
Python常用数据结构和公共方法技巧总结
2021-10-18 06:02:01
Go语言中调用外部命令的方法总结
2024-05-13 10:44:09
python合并已经存在的sheet数据到新sheet的方法
2023-07-25 18:05:51
Python 远程开关机的方法
2022-06-19 18:12:30
前端面试之输入npm run后执行原理
2024-05-05 09:21:55
golang-redis之sorted set类型操作详解
2024-02-02 05:19:20
Python设计模式之状态模式原理与用法详解
2022-04-16 06:37:36
python数据可视化Seaborn画热力图
2022-01-17 22:55:05
Python基础数据类型tuple元组的概念与用法
2022-11-25 03:59:16
PHP echo,print,printf,sprintf函数之间的区别与用法详解
2023-11-21 14:12:25
SQL Server中Table字典数据的查询SQL示例代码
2024-01-25 13:47:49