Flask和pyecharts实现动态数据可视化

作者:---WeiGeH 时间:2022-06-15 04:21:20 

1:数据源

Hollywood Movie Dataset: 好莱坞2006-2011数据集

实验目的: 实现 统计2006-2011的数据综合统计情况,进行数据可视化

gitee地址:https://gitee.com/dgwcode/an_example_of_py_learning/tree/master/MovieViwer

1.数据例子:


Film ,Major Studio,Budget
300,Warner Bros,
300,Warner Bros.,65
3:10 to Yuma,Lionsgate,48
Days of Night,Independent,32
Across the Universe,Independent,45
Alien vs. Predator -- Requiem,Fox,40
Alvin and the Chipmunks,Fox,70
American Gangster,Universal,10
Bee Movie,Paramount,15
Beowulf,Paramount,15
Blades of Glory,Paramount,61

Flask和pyecharts实现动态数据可视化

2: 环境pycharm新建Flask项目

Flask和pyecharts实现动态数据可视化

Flask和pyecharts实现动态数据可视化

3 数据处理:

Film ,Major Studio,Budget 为数据的三个标题 截断这三个数据就行


import pandas as pd
from threading import Timer
import math

# coding=utf-8
def getTotalData():
 data1 = pd.read_csv('static/1.csv');
 data2 = pd.read_csv('static/2.csv');
 data3 = pd.read_csv('static/3.csv');
 data4 = pd.read_csv('static/4.csv');
 data5 = pd.read_csv('static/5.csv');
 datadic1 = [];
 datadic2 = [];
 datadic3 = [];
 datadic4 = [];
 datadic5 = [];
 # 处理数据.csv
 for x, y in zip(data1['Major Studio'], data1['Budget']):
   datadic1.append((x, y))
 for x, y in zip(data2['Major Studio'], data2['Budget']):
   datadic2.append((x, y))
 for x, y in zip(data3['Lead Studio'], data3['Budget']):
   datadic3.append((x, y))
 for x, y in zip(data4['Lead Studio'], data4['Budget']):
   datadic4.append((x, y))
 for x, y in zip(data5['Lead Studio'], data5['Budget']):
   datadic5.append((x, y))
 totaldata = [];
 totaldata.append(datadic1);
 totaldata.append(datadic2);
 totaldata.append(datadic3);
 totaldata.append(datadic4);
 totaldata.append(datadic5);
 return totaldata;

indexx = 0;
curindex = 0;
end = 5;
returnData = dict();

# 定时处理数据
def dataPre():
 global indexx, end, curindex, flag, returnData;
 totalData = getTotalData(); # list[map]
 # x = len(totalData[0]) + totalData[1].len() + totalData[2].len() + totalData[3].len() + totalData[4].len();
 data = totalData[indexx];
 # init
 # print(curindex, end, indexx)
 # print(len(data))
 for k, v in data[curindex:end]:
   if v == "nan" or math.isnan(v):# 截断 k v中 nan
     continue;
   if returnData.get(k, -1) == -1:
     print(k, v);
     returnData[k] = v;
   else:
     returnData[k] = returnData[k] + v;
 print(len(returnData))
 if end < len(data) - 20:
   curindex = end;
   end = end + 20;
 if end >= len(data) - 20:
   indexx += 1;
   curindex = 0;
   end = 20;
 t = Timer(2, dataPre)
 t.start()
 print(returnData.keys(), end='\n')
 return returnData;

if __name__ == "__main__":
 dataPre();

4:实际程序入口


from flask import Flask, render_template
from pyecharts.charts import Bar
from pyecharts import options as opts
import math
import dealdata
from threading import Timer
from pyecharts.globals import ThemeType

app = Flask(__name__, static_folder="templates")

@app.route('/')
def hello_world():
 dataPre();# 数据入口
 return render_template("index.html")

# 定义全局索引
indexx = 0;
curindex = 0;
end = 5;
returnData = dict();

# 定时处理数据
def dataPre():
 global indexx, end, curindex, flag, returnData;
 totalData = dealdata.getTotalData(); # list[map]
 # x = len(totalData[0]) + totalData[1].len() + totalData[2].len() + totalData[3].len() + totalData[4].len();
 data = totalData[indexx];
 #print(totalData)
 # init
 # print(curindex, end, indexx)
 # print(len(data))
 for k, v in data[curindex:end]:
   if v == "nan" or math.isnan(v): # 截断 k v中 nan
     continue;
   if returnData.get(k, -1) == -1:
     returnData[k] = v;
   else:
     returnData[k] = returnData[k] + v;
 print(len(returnData)) # 反应长度关系
 if end < len(data) - 15: # 参数为截断的项数 与前端时间要对应
   curindex = end;
   end = end + 15;
 if end >= len(data) - 15:
   indexx += 1;
   curindex = 0;
   end = 15;
 t = Timer(1, dataPre)
 t.start()
 #print(returnData, end='\n')

def bar_reversal_axis() -> Bar:
 global returnData;
 #print(sorted(returnData.items(), key=lambda x: x[1]))
 sorted(returnData.items(), key=lambda x: x[1],reverse=False)
 #print(returnData.keys())
 c = (
   Bar({"theme": ThemeType.MACARONS})
     .add_xaxis(list(returnData.keys()))
     .add_yaxis("电影公司名称:",list(returnData.values()),color="#BF3EFF")
     .reversal_axis()
     .set_series_opts(label_opts=opts.LabelOpts(position="right",color="#BF3EFF",
                           font_size=12))
     .set_global_opts(title_opts=opts.TitleOpts(title="2007-2011好莱坞电影最受欢迎公司",
                          pos_left='60%',subtitle="当前"+str(2006+indexx)+"年"))
 )
 return c;
@app.route("/barChart")
def index():
 c = bar_reversal_axis();
 return c.dump_options_with_quotes();

if __name__ == '__main__':
 app.run();

5: 前端


<html>
<head>
<meta charset="UTF-8">
<title>Awesome-pyecharts</title>
<script src="https://cdn.bootcss.com/jquery/3.0.0/jquery.min.js"></script>
<script type="text/javascript" src="https://assets.pyecharts.org/assets/echarts.min.js"></script>
 <style>
   div{
     padding-left: 100px;
   }
 </style>

</head>
<body>
<div id="bar" style="width:1024px; height:1024px;"></div>
<script>
 var chart = echarts.init(document.getElementById('bar'), 'white', {renderer: 'canvas'});
 $(
  function () {
   fetchData(chart);
   setInterval(fetchData, 500);
  }
 );
 function fetchData() {
  $.ajax({
   type: "GET",
   url: "http://127.0.0.1:5000/barChart",
   dataType: 'json',
   success: function (result) {
    chart.setOption(result);
   }
  });
 }
</script>
</body>
</html>

6: 扩展资料

https://github.com/pyecharts/pyecharts/tree/master/pyecharts/render/templates

Flask和pyecharts实现动态数据可视化


{% import 'macro' as macro %}
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>{{ chart.page_title }}</title>
 {{ macro.render_chart_dependencies(chart) }}
</head>
<body>
 <div id="{{ chart.chart_id }}" style="width:{{ chart.width }}; height:{{ chart.height }};"></div>
 <script>
   var canvas_{{ chart.chart_id }} = document.createElement('canvas');
   var mapChart_{{ chart.chart_id }} = echarts.init(
      canvas_{{ chart.chart_id }}, '{{ chart.theme }}', {width: 4096, height: 2048, renderer: '{{ chart.renderer }}'});
   {% for js in chart.js_functions.items %}
     {{ js }}
   {% endfor %}
   var mapOption_{{ chart.chart_id }} = {{ chart.json_contents }};
   mapChart_{{ chart.chart_id }}.setOption(mapOption_{{ chart.chart_id }});
   var chart_{{ chart.chart_id }} = echarts.init(
   document.getElementById('{{ chart.chart_id }}'), '{{ chart.theme }}', {renderer: '{{ chart.renderer }}'});
   var options_{{ chart.chart_id }} = {
     "globe": {
     "show": true,
     "baseTexture": mapChart_{{ chart.chart_id }},
     shading: 'lambert',
     light: {
       ambient: {
         intensity: 0.6
       },
       main: {
         intensity: 0.2
       }
      }
     }};
   chart_{{ chart.chart_id }}.setOption(options_{{ chart.chart_id }});
 </script>
</body>
</html>

来源:https://www.cnblogs.com/dgwblog/p/11908702.html

标签:Flask,pyecharts,数据,可视
0
投稿

猜你喜欢

  • 正则表达式中两个反斜杠的匹配规则详解

    2023-10-05 17:24:37
  • 简单谈谈centos7中配置php

    2024-03-12 02:42:33
  • Python3中在Anaconda环境下安装basemap包

    2021-11-30 20:05:57
  • Mysql安装注意事项、安装失败的五个原因分析

    2024-01-22 14:16:48
  • Python利用pandas计算多个CSV文件数据值的实例

    2022-11-21 23:00:26
  • python 基础学习第二弹 类属性和实例属性

    2023-08-02 04:07:44
  • SQL触发器实例讲解

    2024-01-24 13:46:55
  • Python基于DFA算法实现内容敏感词过滤

    2023-07-25 20:14:11
  • vue使用@scroll监听滚动事件时,@scroll无效问题的解决方法详解

    2024-05-09 15:24:55
  • MYSQL事件查看器使用介绍

    2024-01-15 07:33:04
  • Yii2中SqlDataProvider用法示例

    2023-11-20 10:10:05
  • Mybatis实现分包定义数据库的原理与过程

    2024-01-23 12:33:55
  • Python 实现Mac 屏幕截图详解

    2021-06-16 13:43:52
  • python基础之并发编程(二)

    2023-01-16 03:10:37
  • MySQL数据库查询之多表查询总结

    2024-01-13 21:49:47
  • Python列表的定义及使用

    2023-08-02 03:38:32
  • 关于大批量数据高效插入方法

    2010-07-31 19:07:00
  • python读取word 中指定位置的表格及表格数据

    2021-04-10 02:42:21
  • MySql8.0以上版本正确修改ROOT密码的方法

    2024-01-22 12:24:40
  • Python打包工具PyInstaller的安装与pycharm配置支持PyInstaller详细方法

    2022-05-20 06:36:55
  • asp之家 网络编程 m.aspxhome.com