python人工智能tensorflow函数tf.layers.dense使用方法
作者:Bubbliiiing 时间:2022-03-09 21:52:34
参数数量及其作用
tf.layers.dense用于添加一个全连接层。
函数如下:
tf.layers.dense(
inputs,#层的输入
units,#该层的输出维度
activation=None,#激活函数
use_bias=True,
kernel_initializer=None, # 卷积核的初始化器
bias_initializer=tf.zeros_initializer(), # 偏置项的初始化器
kernel_regularizer=None, # 卷积核的正则化
bias_regularizer=None, # 偏置项的正则化
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
trainable=True,
name=None, # 层的名字
reuse=None # 是否重复使用参数
)
部分参数解释:
inputs:输入该层的数据。
units:该层的输出维度。
activation:激活函数。
use_bias:是否使用偏置项。
trainable=True : 表明该层的参数是否参与训练。
示例
手写体例子,利用两个dense可以构成一个单层网络,在下面例子中,网络的神经元个数为200。
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def compute_accuracy(x_data,y_data):
global dense2
y_pre = sess.run(dense2,feed_dict={xs:x_data})
correct_prediction = tf.equal(tf.arg_max(y_data,1),tf.arg_max(y_pre,1)) #判断是否相等
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #赋予float32数据类型,求平均。
result = sess.run(accuracy,feed_dict = {xs:batch_xs,ys:batch_ys}) #执行
return result
mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")
xs = tf.placeholder(tf.float32,[None,784])
ys = tf.placeholder(tf.float32,[None,10])
dense1 = tf.layers.dense(
xs,
200,
activation = tf.nn.tanh,
kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.3),
bias_initializer=tf.constant_initializer(0.1),
name='fc1'
)
dense2 = tf.layers.dense(
dense1,
10,
activation = tf.nn.softmax,
kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.3),
bias_initializer=tf.constant_initializer(0.1),
name='fc2'
)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = dense2, labels = ys),name = 'loss')
#label是标签,logits是预测值,交叉熵。
train = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for i in range(5001):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train,feed_dict = {xs:batch_xs,ys:batch_ys})
if i % 1000 == 0:
print("训练%d次的识别率为:%f。"%((i+1),compute_accuracy(mnist.test.images,mnist.test.labels)))
实验结果为:
训练1次的识别率为:0.107400。
训练1001次的识别率为:0.805200。
训练2001次的识别率为:0.822800。
训练3001次的识别率为:0.829400。
训练4001次的识别率为:0.833100。
训练5001次的识别率为:0.835300。
来源:https://blog.csdn.net/weixin_44791964/article/details/99685428
标签:python,人工智能,tensorflow,tf.layers.dense
0
投稿
猜你喜欢
Python脚本实现自动登录校园网
2023-01-26 09:37:56
对用户研究实践的思考
2010-10-19 12:21:00
如何使用python统计字符在文件中出现的次数
2021-07-13 20:11:47
php文件操作小结(删除指定文件/获取文件夹下的文件名/读取文件夹下图片名)
2024-05-22 10:07:10
使用Python脚本在Linux下实现部分Bash Shell的教程
2023-10-02 06:55:28
Python正则替换字符串函数re.sub用法示例
2021-03-04 17:25:42
如何在Win下mysql备份恢复命令
2010-03-03 17:23:00
MySQL创建数据库和创建数据表
2024-01-26 14:44:55
Python中的 enumerate和zip详情
2022-10-22 23:48:30
list视图方式设计浅析
2008-12-21 16:04:00
python备份文件的脚本
2023-12-14 10:52:02
python getpass实现密文实例详解
2021-06-25 20:29:17
利用pyuic5将ui文件转换为py文件的方法
2023-03-20 05:01:43
详解nvm管理多版本node踩坑
2024-05-03 15:56:43
Python中实现输入超时及如何通过变量获取变量名
2021-02-17 03:17:48
python 搭建简单的http server,可直接post文件的实例
2021-08-25 15:07:39
关于使用python反编译apk签名出包的问题
2022-12-19 19:39:04
ASP如何跳出本次进入下一次循环
2008-10-23 13:46:00
通过gradio和摄像头获取照片和视频实现过程
2023-07-08 18:02:30
如何随机显示图片计数器?
2010-05-16 15:21:00