Pytorch教程内置模型源码实现

作者:xz1308579340 时间:2022-09-04 12:58:50 

翻译自
https://pytorch.org/docs/stable/torchvision/models.html
主要讲解了torchvision.models的使用

torchvision.models

torchvision.models中包含了如下模型

  • AlexNet

  • VGG

  • ResNet

  • SqueezeNet

  • DenseNet

  • Inception v3

随机初始化模型


import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
desnet = models.densenet161()
inception =models.inception_v3()

使用预训练好的参数

pytorch提供了预训练的模型,使用torch.utils.model_zoo ,通过让参数pretrained =True来构建训练好的模型

方法如下


resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)

实例化一个预训练好的模型会自动下载权重到缓存目录,这个权重存储路径可以通过环境变量TORCH_MODEL_ZOO来指定,详细的参考torch.utils.model_zoo.load_url() 这个函数

有的模型试验了不同的训练和评估,例如batch normalization。使用model.train()和model.eval()来转换,查看train() or eval() 来了解更多细节

所有的预训练网络希望使用相同的方式进行归一化,例如图片是mini-batch形式的3通道RGB图片(3HW),H和W最少是244,。 图像必须加载到[0,1]范围内,然后使用均值=[0.485,0.456,0.406]和std =[0.229, 0.224, 0.225]进行归一化。

您可以使用以下转换来normalzie:


normalize = trainform.Normalize9mean = [0.485,0.456,0.406],std = [0.229,0.224,0.225])

在这里我们可以找到一个在Imagenet上的这样的例子
https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101

目前这些模型的效果如下

Pytorch教程内置模型源码实现

下面是模型源码的具体实现,具体实现大家可以阅读源码


###ALEXNET
torchvision.models.alexnet(pretrained=False, **kwargs)[SOURCE]
AlexNet model architecture from the “One weird trick…” paper.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
###VGG
torchvision.models.vgg11(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”)
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg11_bn(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”) with batch normalization
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”)
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13_bn(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”) with batch normalization
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”)
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16_bn(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”) with batch normalization
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration “E”)
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19_bn(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration ‘E') with batch normalization
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
RESNET
torchvision.models.resnet18(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-18 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet34(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-34 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet50(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-50 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet101(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-101 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet152(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-152 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
SQUEEZENET
torchvision.models.squeezenet1_0(pretrained=False, **kwargs)[SOURCE]
SqueezeNet model architecture from the “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size” paper.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.squeezenet1_1(pretrained=False, **kwargs)[SOURCE]
SqueezeNet 1.1 model from the official SqueezeNet repo. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
DENSENET
torchvision.models.densenet121(pretrained=False, **kwargs)[SOURCE]
Densenet-121 model from “Densely Connected Convolutional Networks”
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet169(pretrained=False, **kwargs)[SOURCE]
Densenet-169 model from “Densely Connected Convolutional Networks”
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet161(pretrained=False, **kwargs)[SOURCE]
Densenet-161 model from “Densely Connected Convolutional Networks”
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet201(pretrained=False, **kwargs)[SOURCE]
Densenet-201 model from “Densely Connected Convolutional Networks”
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
INCEPTION V3
torchvision.models.inception_v3(pretrained=False, **kwargs)[SOURCE]
Inception v3 model architecture from “Rethinking the Inception Architecture for Computer Vision”.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet

来源:https://blog.csdn.net/xz1308579340/article/details/85336102

标签:Pytorch,内置模型
0
投稿

猜你喜欢

  • Ubuntu10下如何搭建MySQL Proxy读写分离探讨

    2024-01-20 08:04:43
  • Python解决pip install时出现的Could not fetch URL问题

    2023-08-01 14:24:45
  • 一些需要禁用的PHP危险函数(disable_functions)

    2023-11-23 15:29:25
  • Go 语言 IDE 中的 VSCode 配置使用教程

    2024-02-20 23:27:36
  • 10个不为人知的Google失败作品

    2008-05-24 16:56:00
  • javascript二维数组转置实例

    2023-08-25 07:11:14
  • Python闭包技巧介绍

    2022-05-30 19:17:04
  • Python图形绘制操作之正弦曲线实现方法分析

    2023-07-05 11:18:59
  • MYSQL GROUP BY用法详解

    2024-01-29 10:22:05
  • wxpython+pymysql实现用户登陆功能

    2023-01-06 11:32:04
  • Python中if语句的使用方法及实例代码

    2022-03-24 07:17:04
  • JavaScript详解使用Promise处理回调地狱与async await修饰符

    2024-04-22 22:43:58
  • Django密码存储策略分析

    2022-03-10 04:16:33
  • Python基于回溯法子集树模板解决旅行商问题(TSP)实例

    2023-04-27 15:39:32
  • Python 在字符串中加入变量的实例讲解

    2023-01-27 10:51:21
  • uniapp小视频项目开发之滑动播放视频

    2023-07-02 05:24:36
  • Python 异常处理Ⅳ过程图解

    2023-06-28 16:05:53
  • python读取txt数据的操作步骤

    2022-12-27 10:36:31
  • js读取配置文件自写

    2024-04-17 09:51:37
  • JavaScript二维数组实现的省市联动菜单

    2024-06-14 22:02:56
  • asp之家 网络编程 m.aspxhome.com