Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

作者:Time ?? 时间:2022-02-26 00:53:49 

一、dlib以及opencv-python库安装

介于我使用的是jupyter notebook,所以在安装dlib和opencv-python时是在

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

这个命令行安装的

dlib安装方法:

1.若可以,直接使用上图所示命令行输入以下命令:

pip install cmake

pip install boost

pip install dlib

若安装了visual studio2019应该就可以直接pip install dlib,至少我是这样

由于很多在执行第三句时都会报错,所以这里提供第二种办法

2.去dlib官网:http://dlib.net/ 或者 https://github.com/davisking/dlib 下载压缩包

下载完成后,解压缩

在安装dlib前需要安装Boost和Cmake,dlib19之后你需要安装vs2015以上的IDE,本人是安装的vs2019,(建议先安装好VS之后再安装Cmake和 boost)

Cmake安装

官网下载安装包:https://cmake.org/download/

我下的是

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

直接安装之后,配置环境变量

Boost下载

安 * oost:下载地址:http://www.boost.org/

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

如果vs安装的是2015以上的版本,可以直接进行下一步,最好安装最新版本,不然会找不到b2命令

下载之后将其解压缩,进入boost_1_73_0文件夹中,找到bootstrap.bat批处理文件,双击运行,等待运行完成后(命令行自动消失)会生成两个文件b2.exe和bjam.exe

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

然后将这两个文件复制到boost_1_73_0根文件夹下:
同样开启一个命令行,定位到这个文件夹,运行命令:

b2 install

这个安装需要一段时间,耐心等候。

利用b2编译库文件:

b2 -a –with-python address-model=64 toolset=msvc runtime-link=static

之前你cmake下载的64位这里(address-model)写64,如果是32位的就把之前的64改成32

安装完成后配置boost环境变量

安装dlib

进入你的dlib解压路径,输入python setup.py install

成功之后会在文件夹中看见dlib和dlib.egg-info ,将这两个文件夹复制到你的python安装的目录下的Lib文件中:

—>例如我的python环境为python2.7,

—>所以将其放在python2-7文件夹的Python2-7\Lib\site-packages中

—>这时,就已经完成了dlib的配置

opencv-python安装方法

在Anaconda Prompt下输入以下命令

pip install opencv-python

但如果一直失败,建议在Anaconda Prompt下输入以下命令

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python

二、dlib的68点模型

dlib的68点模型,使用网络上大神训练好的特征预测器,用来进行python代码人脸识别的特征预测。

三、Python实现人脸识别&表情判别


"""
从视屏中识别人脸,并实时标出面部特征点
"""
import sys
import dlib # 人脸识别的库dlib
import numpy as np # 数据处理的库numpy
import cv2 # 图像处理的库OpenCv

class face_emotion():
def __init__(self):
 # 使用特征提取器get_frontal_face_detector
 self.detector = dlib.get_frontal_face_detector()
 # dlib的68点模型,使用作者训练好的特征预测器
 self.predictor = dlib.shape_predictor("F:/face.dat")

# 建cv2摄像头对象,这里使用电脑自带摄像头,如果接了外部摄像头,则自动切换到外部摄像头
 self.cap = cv2.VideoCapture(0)
 # 设置视频参数,propId设置的视频参数,value设置的参数值
 self.cap.set(3, 480)
 # 截图screenshoot的计数器
 self.cnt = 0

def learning_face(self):

# 眉毛直线拟合数据缓冲
 line_brow_x = []
 line_brow_y = []

# cap.isOpened() 返回true/false 检查初始化是否成功
 while (self.cap.isOpened()):

# cap.read()
  # 返回两个值:
  # 一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
  # 图像对象,图像的三维矩阵
  flag, im_rd = self.cap.read()

# 每帧数据延时1ms,延时为0读取的是静态帧
  k = cv2.waitKey(1)

# 取灰度
  img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)

# 使用人脸检测器检测每一帧图像中的人脸。并返回人脸数rects
  faces = self.detector(img_gray, 0)

# 待会要显示在屏幕上的字体
  font = cv2.FONT_HERSHEY_SIMPLEX

# 如果检测到人脸
  if (len(faces) != 0):

# 对每个人脸都标出68个特征点
   for i in range(len(faces)):
    # enumerate方法同时返回数据对象的索引和数据,k为索引,d为faces中的对象
    for k, d in enumerate(faces):
     # 用红色矩形框出人脸
     cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0, 0, 255))
     # 计算人脸热别框边长
     self.face_width = d.right() - d.left()

# 使用预测器得到68点数据的坐标
     shape = self.predictor(im_rd, d)
     # 圆圈显示每个特征点
     for i in range(68):
      cv2.circle(im_rd, (shape.part(i).x, shape.part(i).y), 2, (0, 255, 0), -1, 8)
      # cv2.putText(im_rd, str(i), (shape.part(i).x, shape.part(i).y), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
      #   (255, 255, 255))

# 分析任意n点的位置关系来作为表情识别的依据
     mouth_width = (shape.part(54).x - shape.part(48).x) / self.face_width # 嘴巴咧开程度
     mouth_higth = (shape.part(66).y - shape.part(62).y) / self.face_width # 嘴巴张开程度
     # print("嘴巴宽度与识别框宽度之比:",mouth_width_arv)
     # print("嘴巴高度与识别框高度之比:",mouth_higth_arv)

# 通过两个眉毛上的10个特征点,分析挑眉程度和皱眉程度
     brow_sum = 0 # 高度之和
     frown_sum = 0 # 两边眉毛距离之和
     for j in range(17, 21):
      brow_sum += (shape.part(j).y - d.top()) + (shape.part(j + 5).y - d.top())
      frown_sum += shape.part(j + 5).x - shape.part(j).x
      line_brow_x.append(shape.part(j).x)
      line_brow_y.append(shape.part(j).y)

# self.brow_k, self.brow_d = self.fit_slr(line_brow_x, line_brow_y) # 计算眉毛的倾斜程度
     tempx = np.array(line_brow_x)
     tempy = np.array(line_brow_y)
     z1 = np.polyfit(tempx, tempy, 1) # 拟合成一次直线
     self.brow_k = -round(z1[0], 3) # 拟合出曲线的斜率和实际眉毛的倾斜方向是相反的

brow_hight = (brow_sum / 10) / self.face_width # 眉毛高度占比
     brow_width = (frown_sum / 5) / self.face_width # 眉毛距离占比
     # print("眉毛高度与识别框高度之比:",round(brow_arv/self.face_width,3))
     # print("眉毛间距与识别框高度之比:",round(frown_arv/self.face_width,3))

# 眼睛睁开程度
     eye_sum = (shape.part(41).y - shape.part(37).y + shape.part(40).y - shape.part(38).y +
        shape.part(47).y - shape.part(43).y + shape.part(46).y - shape.part(44).y)
     eye_hight = (eye_sum / 4) / self.face_width
     # print("眼睛睁开距离与识别框高度之比:",round(eye_open/self.face_width,3))

# 分情况讨论
     # 张嘴,可能是开心或者惊讶
     if round(mouth_higth >= 0.03):
      if eye_hight >= 0.056:
       cv2.putText(im_rd, "amazing", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX,
          0.8,
          (0, 0, 255), 2, 4)
      else:
       cv2.putText(im_rd, "happy", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
          (0, 0, 255), 2, 4)

# 没有张嘴,可能是正常和生气
     else:
      if self.brow_k <= -0.3:
       cv2.putText(im_rd, "angry", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
          (0, 0, 255), 2, 4)
      else:
       cv2.putText(im_rd, "nature", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
          (0, 0, 255), 2, 4)

# 标出人脸数
   cv2.putText(im_rd, "Faces: " + str(len(faces)), (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
  else:
   # 没有检测到人脸
   cv2.putText(im_rd, "No Face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)

# 添加说明
  im_rd = cv2.putText(im_rd, "S: screenshot", (20, 400), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
  im_rd = cv2.putText(im_rd, "Q: quit", (20, 450), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)

# 按下s键截图保存
  if (k == ord('s')):
   self.cnt += 1
   cv2.imwrite("screenshoot" + str(self.cnt) + ".jpg", im_rd)

# 按下q键退出
  if (k == ord('q')):
   break

# 窗口显示
  cv2.imshow("camera", im_rd)

# 释放摄像头
 self.cap.release()

# 删除建立的窗口
 cv2.destroyAllWindows()

if __name__ == "__main__":
my_face = face_emotion()
my_face.learning_face()

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

四、参考文章

https://www.jb51.net/article/189876.htm

来源:https://blog.csdn.net/Time_book/article/details/107057415

标签:Python,Dlib,Opencv,人脸采集
0
投稿

猜你喜欢

  • pandas.dataframe按行索引表达式选取方法

    2021-10-28 20:26:32
  • Python 计算机视觉编程进阶之OpenCV 图像锐化及边缘检测

    2021-07-31 11:03:29
  • numpy的Fancy Indexing和array比较详解

    2022-05-12 23:31:46
  • Python实现自动签到脚本功能

    2022-07-24 21:53:40
  • JS高阶函数原理与用法实例分析

    2024-05-09 10:36:21
  • Adobe AIR beta 2震撼发布!

    2007-10-07 11:57:00
  • python3 中时间戳、时间、日期的转换和加减操作

    2023-12-31 17:41:36
  • javascript 动态插入技术

    2009-12-14 20:50:00
  • SQLMAP插件tamper编写与使用详解

    2024-01-14 02:13:08
  • 还不知道Anaconda是什么?读这一篇文章就够了

    2022-02-19 01:36:50
  • javascript数组的使用

    2024-06-07 15:25:37
  • 用JavaScript实现UrlEncode和UrlDecode功能

    2008-01-27 11:30:00
  • python对RabbitMQ的简单入门使用教程

    2021-01-13 17:53:44
  • Python爬虫实现“盗取”微信好友信息的方法分析

    2023-01-16 09:37:33
  • python 获取图片分辨率的方法

    2022-02-19 12:03:56
  • python实现雪花飘落效果实例讲解

    2022-08-29 07:31:55
  • python数据库编程 Mysql实现通讯录

    2024-01-24 17:53:11
  • .NET之生成数据库全流程实现

    2024-01-16 05:08:48
  • 多个jquery.datatable共存,checkbox全选异常的快速解决方法

    2024-05-11 09:18:50
  • 学会sql数据库关系图(Petshop)

    2012-10-07 10:34:49
  • asp之家 网络编程 m.aspxhome.com