pytorch实现mnist分类的示例讲解
作者:Hy云帆 时间:2022-03-30 09:17:19
torchvision包 包含了目前流行的数据集,模型结构和常用的图片转换工具。
torchvision.datasets中包含了以下数据集
MNIST
COCO(用于图像标注和目标检测)(Captioning and Detection)
LSUN Classification
ImageFolder
Imagenet-12
CIFAR10 and CIFAR100
STL10
torchvision.models
torchvision.models模块的 子模块中包含以下模型结构。
AlexNet
VGG
ResNet
SqueezeNet
DenseNet You can construct a model with random weights by calling its constructor:
pytorch torchvision transform
对PIL.Image进行变换
from __future__ import print_function
import argparse #Python 命令行解析工具
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
if __name__ == '__main__':
main()
来源:https://blog.csdn.net/KyrieHe/article/details/80516737
标签:pytorch,mnist分类
0
投稿
猜你喜欢
python 获取一个值在某个区间的指定倍数的值方法
2023-04-08 17:19:07
Python设计模式之备忘录模式原理与用法详解
2022-12-27 11:12:01
python3.5安装python3-tk详解
2021-01-02 02:15:23
pycharm 无法加载文件activate.ps1的原因分析及解决方法
2022-07-11 01:00:49
Django框架表单操作实例分析
2022-01-27 23:43:59
python实现经纬度采样的示例代码
2021-12-25 13:24:37
python打包exe开机自动启动的实例(windows)
2023-11-08 06:34:00
python利用有道翻译实现"语言翻译器"的功能实例
2021-08-21 02:47:38
成功安装vscode中go的相关插件(详细教程)
2024-05-08 10:14:32
Python实现的递归神经网络简单示例
2022-03-26 04:19:48
Python StringIO模块实现在内存缓冲区中读写数据
2021-12-22 08:23:13
Oracle 管道 解决Exp/Imp大量数据处理问题
2009-07-12 18:31:00
Javascript的常规数组和关联数组对比小结
2024-04-28 09:47:29
超详细注释之OpenCV旋转图像任意角度
2021-04-20 23:47:29
原生JS实现九宫格抽奖效果
2024-04-17 10:33:38
python和php哪个容易学
2024-05-05 09:31:52
python用pandas数据加载、存储与文件格式的实例
2021-09-05 03:44:47
Git实现克隆历史的某个版本
2023-03-24 01:39:54
基于鼠标点击跟踪的用户点击行为分析
2008-04-24 19:22:00
Python 内置高阶函数详细
2022-07-26 11:02:07