python实现多层感知器

作者:陆子野 时间:2022-07-04 14:37:10 

写了个多层感知器,用bp梯度下降更新,拟合正弦曲线,效果凑合。


# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt

def sigmod(z):
return 1.0 / (1.0 + np.exp(-z))

class mlp(object):
def __init__(self, lr=0.1, lda=0.0, te=1e-5, epoch=100, size=None):
 self.learningRate = lr
 self.lambda_ = lda
 self.thresholdError = te
 self.maxEpoch = epoch
 self.size = size
 self.W = []
 self.b = []
 self.init()

def init(self):
 for i in xrange(len(self.size)-1):
  self.W.append(np.mat(np.random.uniform(-0.5, 0.5, size=(self.size[i+1], self.size[i]))))
  self.b.append(np.mat(np.random.uniform(-0.5, 0.5, size=(self.size[i+1], 1))))

def forwardPropagation(self, item=None):
 a = [item]
 for wIndex in xrange(len(self.W)):
  a.append(sigmod(self.W[wIndex]*a[-1]+self.b[wIndex]))
 """
 print "-----------------------------------------"
 for i in a:
  print i.shape,
 print
 for i in self.W:
  print i.shape,
 print
 for i in self.b:
  print i.shape,
 print
 print "-----------------------------------------"
 """
 return a

def backPropagation(self, label=None, a=None):
 # print "backPropagation--------------------begin"
 delta = [(a[-1]-label)*a[-1]*(1.0-a[-1])]
 for i in xrange(len(self.W)-1):
  abc = np.multiply(a[-2-i], 1-a[-2-i])
  cba = np.multiply(self.W[-1-i].T*delta[-1], abc)
  delta.append(cba)
 """
 print "++++++++++++++delta++++++++++++++++++++"
 print "len(delta):", len(delta)
 for ii in delta:
  print ii.shape,
 print "\n======================================="
 """
 for j in xrange(len(delta)):
  ads = delta[j]*a[-2-j].T
  # print self.W[-1-j].shape, ads.shape, self.b[-1-j].shape, delta[j].shape
  self.W[-1-j] = self.W[-1-j]-self.learningRate*(ads+self.lambda_*self.W[-1-j])
  self.b[-1-j] = self.b[-1-j]-self.learningRate*delta[j]
  """print "=======================================1234"
  for ij in self.b:
   print ij.shape,
  print
  """
 # print "backPropagation--------------------finish"
 error = 0.5*(a[-1]-label)**2
 return error

def train(self, input_=None, target=None, show=10):
 for ep in xrange(self.maxEpoch):
  error = []
  for itemIndex in xrange(input_.shape[1]):
   a = self.forwardPropagation(input_[:, itemIndex])
   e = self.backPropagation(target[:, itemIndex], a)
   error.append(e[0, 0])
  tt = sum(error)/len(error)
  if tt < self.thresholdError:
   print "Finish {0}: ".format(ep), tt
   return
  elif ep % show == 0:
   print "epoch {0}: ".format(ep), tt

def sim(self, inp=None):
 return self.forwardPropagation(item=inp)[-1]

if __name__ == "__main__":
tt = np.arange(0, 6.28, 0.01)
labels = np.zeros_like(tt)
print tt.shape
"""
for po in xrange(tt.shape[0]):
 if tt[po] < 4:
  labels[po] = 0.0
 elif 8 > tt[po] >= 4:
  labels[po] = 0.25
 elif 12 > tt[po] >= 8:
  labels[po] = 0.5
 elif 16 > tt[po] >= 12:
  labels[po] = 0.75
 else:
  labels[po] = 1.0
"""
tt = np.mat(tt)
labels = np.sin(tt)*0.5+0.5
labels = np.mat(labels)
model = mlp(lr=0.2, lda=0.0, te=1e-5, epoch=500, size=[1, 6, 6, 6, 1])
print tt.shape, labels.shape
print len(model.W), len(model.b)
print
model.train(input_=tt, target=labels, show=10)
sims = [model.sim(tt[:, idx])[0, 0] for idx in xrange(tt.shape[1])]

xx = tt.tolist()[0]
plt.figure()
plt.plot(xx, labels.tolist()[0], xx, sims, 'r')
plt.show()

效果图:

python实现多层感知器

来源:https://blog.csdn.net/u013781175/article/details/48313903

标签:python,感知器
0
投稿

猜你喜欢

  • python人工智能tensorflow函数tensorboard使用方法

    2021-04-21 14:52:46
  • 基于Python+Pygame实现经典赛车游戏

    2023-09-18 03:57:43
  • windows环境下mysql数据库的主从同步备份步骤(单向同步)

    2024-01-19 16:53:34
  • ubunt18.04LTS+vscode+anaconda3下的python+C++调试方法

    2023-04-01 16:46:37
  • 利用Python实现普通视频变成动漫视频

    2023-02-05 05:13:59
  • 轻松处理Dreamweaver段落缩进

    2007-11-17 07:53:00
  • 用pip给python安装matplotlib库的详细教程

    2021-02-02 00:02:45
  • 让Entity Framework支持MySql数据库

    2010-12-14 15:22:00
  • Python实现绘制3D地球旋转效果

    2021-04-17 22:25:37
  • pandas数据清洗(缺失值和重复值的处理)

    2021-10-05 10:36:43
  • 使用Jquery+Ajax+Json如何实现分页显示附JAVA+JQuery实现异步分页

    2024-05-21 10:12:38
  • 网站508规范(译)

    2008-04-03 13:26:00
  • MySQL创建、修改和删除表操作指南

    2024-01-19 20:32:59
  • 交互因视觉设计而更完美

    2008-05-31 17:22:00
  • python Django模板的使用方法(图文)

    2022-03-30 04:23:52
  • oracle删除已存在的表的实例

    2024-01-16 19:24:58
  • Golang利用channel协调协程的方法详解

    2024-05-08 10:21:54
  • Python3的介绍、安装和命令行的认识(推荐)

    2022-10-09 22:45:36
  • Python判断和循环语句的分析与应用

    2021-09-28 02:46:59
  • 给Python学习者的文件读写指南(含基础与进阶)

    2021-04-26 12:05:40
  • asp之家 网络编程 m.aspxhome.com