matplotlib基础绘图命令之errorbar的使用

作者:weixin_43569478 时间:2022-03-10 23:20:38 

在matplotlib中,errorbar方法用于绘制带误差线的折线图,基本用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

yerr参数用于指定y轴水平的误差,同时该方法也支持x轴水平的误差,对应参数xerr。指定误差值有多种方式,上述代码展示的是指定一个统一标量的用法,此时,所以的点误差值都一样。

除此之外,还可以指定为一个和点的个数相同的数组,为每个点单独设置误差值,用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=[1, 2, 3, 4])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

另外,考虑到每个点的上下误差会不同,也支持用行数为2的多维数组来单独指定每个点上下的误差值,用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=[[1,2,3,4],[1, 2, 3, 4]])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

xerr参数的用法和yerr相同,这里不再赘述,示例如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], xerr=1)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

errorbar方法支持同时指定xerr和yerr参数,用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], xerr=0.5, yerr=0.5)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

对于误差图的样式,可以通过以下几个参数来个性化指定

1. fmt

fmt参数的值和plot方法中指定点的颜色,形状,线条风格的缩写方式相同,示例如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='co--')

上述代码同时指定了3个属性,输出结果如下

matplotlib基础绘图命令之errorbar的使用

默认的图中只有线条这一元素,所以当我们指定了点的属性时,如果不指定线条的风格等属性,则对应的属性为空,线条元素不会显示,示例如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='co')

上述代码没有指定线条的风格,输出结果如下

matplotlib基础绘图命令之errorbar的使用

再来看一个例子,示例如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='c')

上述代码只指定了颜色属性,输出结果如下

matplotlib基础绘图命令之errorbar的使用

2. ecolor

ecolor参数指定error bar的颜色,可以和折线的颜色加以区分,用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='co--', ecolor='g')

输出结果如下

matplotlib基础绘图命令之errorbar的使用

3. elinewidth

elinewidth参数指定error bar的线条宽度,用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='ro-',ecolor='k',elinewidth=10)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

4. lims系列参数

lims系列参数用于控制误差线的显示,对于x轴水平的误差线而言,有以下两个参数

1. xuplims

2. xlolims

对于y轴水平的误差线而言,有以下两个参数

1. uplims

2. lolims

这四个参数默认的取值为False, 当取值为True时,对应方向的误差线不显示,同时在另外一个方向上的误差线上,会用箭头加以标识。

当uplims参数的值为True时,向上的误差线不显示,向下的误差线加箭头,用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, uplims=True)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

当lolims参数的值为True时,向下的误差线不显示,向上的误差线加箭头,用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, lolims=True)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

当uplims和lolims参数的值都为True时,双向的误差线都加箭头,用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, uplims=True, lolims=True)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

除了指定为标量外,lims系列参数的值也可以是一个列表,为每个点单独设值,用法如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, uplims=[False, True, False, True], lolims=[True, False, True, False])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

不同的True和False的组合可以实现不同的效果,示例如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=0.5, uplims=[True,True,False,False],lolims=[True,False,True,False])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

和xerr,yerr类似,我们也可以同时指定4个lims参数,示例如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=0.5, uplims=[True,True,False,False],lolims=[True,False,True,False],xerr=0.5, xuplims=[True,False,True,False],xlolims=[True,True,False,False])

输出结果如下

matplotlib基础绘图命令之errorbar的使用

5. errorevery

errorevery参数用于指定误差线的抽样频率,默认情况下,每个点的误差线都会显示,当点很多且密集分布时, 每个点都显示误差线的话,就很难看出有效的信息,比如下图


plt.errorbar(x=range(100), y=range(100),yerr=50)

matplotlib基础绘图命令之errorbar的使用

过于密集的情况下,可以使用errorevery参数进行抽样,基本用法如下


plt.errorbar(x=range(100), y=range(100),yerr=50,errorevery=6)

上述代码表示从第一个点开始,每6个点画一个误差线,这样抽样之后,误差线就不那么密集了,输出结果如下

matplotlib基础绘图命令之errorbar的使用

除了以上几个专属的基本参数外,还有很多的通用参数,可以对errorbar的样式进行精细调整,示例如下


plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, marker='s', mfc='red', mec='green', ms=20, mew=4)

输出结果如下

matplotlib基础绘图命令之errorbar的使用

errorbar的参数较多,熟练掌握常用的几个即可。

来源:https://blog.csdn.net/weixin_43569478/article/details/107625607

标签:matplotlib,errorbar
0
投稿

猜你喜欢

  • python有证书的加密解密实现方法

    2023-02-10 08:07:30
  • Python内置数据结构与操作符的练习题集锦

    2022-07-25 05:12:53
  • Python地理地图可视化folium标记点弹窗设置代码(推荐)

    2022-08-18 17:02:57
  • ASP 使用Filter函数来检索数组

    2011-04-30 16:49:00
  • python多进程 主进程和子进程间共享和不共享全局变量实例

    2022-11-05 11:42:56
  • 安装pytorch时报sslerror错误的解决方案

    2022-01-01 05:20:53
  • SQL Server如何实现快速删除重复记录?

    2011-05-03 11:18:00
  • Python+OpenCV目标跟踪实现基本的运动检测

    2023-05-14 14:30:54
  • python pygame实现五子棋小游戏

    2021-10-31 13:39:23
  • 使用PyCharm创建Django项目及基本配置详解

    2021-03-31 10:51:36
  • python flask 如何修改默认端口号的方法步骤

    2021-07-04 16:35:14
  • Python线程之如何解决共享变量问题

    2023-08-27 16:15:56
  • Python读取word文本操作详解

    2023-08-23 15:32:50
  • Python基础之教你怎么在M1系统上使用pandas

    2023-09-02 12:56:23
  • SQL Server与Oracle数据库在查询优化上的差异

    2009-02-18 14:28:00
  • 解决Dreamweaver不支持中文文件名

    2008-06-04 09:37:00
  • 提高Python生产力的五个Jupyter notebook插件

    2021-06-01 12:52:33
  • XHTML1.0规范:您是否为img图片标签赋予alt属性

    2009-09-21 11:11:00
  • js和php如何获取当前url的内容

    2023-11-14 10:09:12
  • php通过隐藏表单控件获取到前两个页面的url

    2023-11-16 04:00:08
  • asp之家 网络编程 m.aspxhome.com