Python利用AutoGrad实现自动计算函数斜率和梯度
作者:Ckend 时间:2023-09-27 22:47:59
AutoGrad 是一个老少皆宜的 Python 梯度计算模块。
对于初高中生而言,它可以用来轻易计算一条曲线在任意一个点上的斜率。
对于大学生、机器学习爱好者而言,你只需要传递给它Numpy这样的标准数据库下编写的损失函数,它就可以自动计算损失函数的导数(梯度)。
我们将从普通斜率计算开始,介绍到如何只使用它来实现一个逻辑回归模型。
1.准备
开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。
(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda,它内置了Python和pip.
(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点
请选择以下任一种方式输入命令安装依赖:
1. Windows 环境 打开 Cmd (开始-运行-CMD)。
2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。
3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.
pip?install?autograd
2.计算斜率
对于初高中生同学而言,它可以用来轻松计算斜率,比如我编写一个斜率为0.5的直线函数:
# 公众号 Python实用宝典
import?autograd.numpy?as?np
from?autograd?import?grad
def?oneline(x):
????y = x/2
????return?y
grad_oneline = grad(oneline)
print(grad_oneline(3.0))
运行代码,传入任意X值,你就能得到在该X值下的斜率:
(base) G:\push\20220724>python 1.py
0.5
由于这是一条直线,因此无论你传什么值,都只会得到0.5的结果。
那么让我们再试试一个tanh函数:
# 公众号 Python实用宝典
import?autograd.numpy?as?np
from?autograd?import?grad
def?tanh(x):
????y = np.exp(-2.0?* x)
????return?(1.0?- y) / (1.0?+ y)
grad_tanh = grad(tanh)
print(grad_tanh(1.0))
此时你会获得 1.0 这个 x 在tanh上的曲线的斜率:
(base) G:\push\20220724>python 1.py
0.419974341614026
我们还可以绘制出tanh的斜率的变化的曲线:
# 公众号 Python实用宝典
import?autograd.numpy?as?np
from?autograd?import?grad
def?tanh(x):
????y = np.exp(-2.0?* x)
????return?(1.0?- y) / (1.0?+ y)
grad_tanh = grad(tanh)
print(grad_tanh(1.0))
import?matplotlib.pyplot?as?plt
from?autograd?import?elementwise_grad?as?egrad
x = np.linspace(-7,?7,?200)
plt.plot(x, tanh(x), x, egrad(tanh)(x))
plt.show()
图中蓝色的线是tanh,橙色的线是tanh的斜率,你可以非常清晰明了地看到tanh的斜率的变化。非常便于学习和理解斜率概念。
3.实现一个逻辑回归模型
有了Autograd,我们甚至不需要借用scikit-learn就能实现一个回归模型:
逻辑回归的底层分类就是基于一个sigmoid函数:
import?autograd.numpy?as?np
from?autograd?import?grad
# Build a toy dataset.
inputs = np.array([[0.52,?1.12,?0.77],
???????????????????[0.88,?-1.08,?0.15],
???????????????????[0.52,?0.06,?-1.30],
???????????????????[0.74,?-2.49,?1.39]])
targets = np.array([True,?True,?False,?True])
def?sigmoid(x):
????return?0.5?* (np.tanh(x /?2.) +?1)
def?logistic_predictions(weights, inputs):
????# Outputs probability of a label being true according to logistic model.
????return?sigmoid(np.dot(inputs, weights))
从下面的损失函数可以看到,预测结果的好坏取决于weights的好坏,因此我们的问题转化为怎么优化这个 weights 变量:
def?training_loss(weights):
????# Training loss is the negative log-likelihood of the training labels.
????preds = logistic_predictions(weights, inputs)
????label_probabilities = preds * targets + (1?- preds) * (1?- targets)
????return?-np.sum(np.log(label_probabilities))
知道了优化目标后,又有Autograd这个工具,我们的问题便迎刃而解了,我们只需要让weights往损失函数不断下降的方向移动即可:
# Define a function that returns gradients of training loss using Autograd.
training_gradient_fun = grad(training_loss)
# Optimize weights using gradient descent.
weights = np.array([0.0,?0.0,?0.0])
print("Initial loss:", training_loss(weights))
for?i?in?range(100):
????weights -= training_gradient_fun(weights) *?0.01
print("Trained loss:", training_loss(weights))
运行结果如下:
(base) G:\push\20220724>python regress.py
Initial loss: 2.772588722239781
Trained loss: 1.067270675787016
由此可见损失函数以及下降方式的重要性,损失函数不正确,你可能无法优化模型。损失下降幅度太单一或者太快,你可能会错过损失的最低点。
总而言之,AutoGrad是一个你用来优化模型的一个好工具,它可以给你提供更加直观的损失走势,进而让你有更多优化想象力。
有兴趣的朋友还可以看官方的更多示例代码:https://github.com/HIPS/autograd/blob/master/examples/
来源:https://mp.weixin.qq.com/s/rH2_onXJ3Xvf3eFlIQbvdw