OpenCV半小时掌握基本操作之对象测量

作者:我是小白呀 时间:2023-06-08 12:09:18 

【OpenCV】⚠️高手勿入! 半小时学会基本操作 ⚠️ 对象测量

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

OpenCV半小时掌握基本操作之对象测量

对象测量

对象测量可以帮助我们进行矩阵计算:

  • 获取弧长与面积

  • 多边形拟合

  • 计算图片对象中心

原点距:

OpenCV半小时掌握基本操作之对象测量

中心距:

OpenCV半小时掌握基本操作之对象测量

图像重心坐标:

OpenCV半小时掌握基本操作之对象测量

多边形拟合

步骤:

  1. 读取图片

  2. 转换成灰度图

  3. 二值化

  4. 轮廓检测

  5. 计算轮廓周长

  6. 多边形拟合

格式:


cv2.approxPolyDP(curve, epsilon, closed, approxCurve=None)

参数:

  • curve: 输入轮廓

  • epsilon: 逼近曲率, 越小表示相似逼近越厉害

  • closed: 是否闭合

OpenCV半小时掌握基本操作之对象测量

代码:


import cv2
from matplotlib import pyplot as plt

# 读取图片
image = cv2.imread("polygon.jpg")
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(image_gray, 127, 255, cv2.THRESH_OTSU)

# 计算轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

# 轮廓近似
perimeter = cv2.arcLength(contours[0], True)
approx = cv2.approxPolyDP(contours[0], perimeter * 0.1, True)

# 绘制轮廓
result1 = cv2.drawContours(image.copy(), contours, 0, (0, 0, 255), 2)
result2 = cv2.drawContours(image.copy(), [approx], -1, (0, 0, 255), 2)

# 图片展示
f, ax = plt.subplots(1, 2, figsize=(12, 8))

# 子图
ax[0].imshow(cv2.cvtColor(result1, cv2.COLOR_BGR2RGB))
ax[1].imshow(cv2.cvtColor(result2, cv2.COLOR_BGR2RGB))

# 标题
ax[0].set_title("contour")
ax[1].set_title("approx")

plt.show()

输出结果:

OpenCV半小时掌握基本操作之对象测量

计算对象中心

cv2.moments()可以帮助我们得到轮距, 从而进一步计算图片对象的中心.

格式:


cv2.moments(array, binaryImage=None)

参数:

  • array: 轮廓

  • binaryImage: 是否把 array 内的非零值都处理为 1, 默认为 None

OpenCV半小时掌握基本操作之对象测量

例 1:


import numpy as np
import cv2

# 读取图片
image = cv2.imread("shape.jpg")
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(image_gray, 0, 255, cv2.THRESH_OTSU)

# 获取轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 遍历每个轮廓
for i, contour in enumerate(contours):

# 面积
   area = cv2.contourArea(contour)

# 外接矩形
   x, y, w, h = cv2.boundingRect(contour)

# 获取论距
   mm = cv2.moments(contour)
   print(mm, type(mm))  # 调试输出 (字典类型)

# 获取中心
   cx = mm["m10"] / mm["m00"]
   cy = mm["m01"] / mm["m00"]

# 获取
   cv2.circle(image, (np.int(cx), np.int(cy)), 3, (0, 255, 255), -1)
   cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)

# 图片展示
cv2.imshow("result", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 保存图片
cv2.imwrite("result1.jpg", image)

输出结果:

{'m00': 8500.5, 'm10': 1027805.8333333333, 'm01': 2991483.6666666665, 'm20': 131713199.41666666, 'm11': 365693040.4583333, 'm02': 1061366842.5833333, 'm30': 17848380183.95, 'm21': 47383693552.933334, 'm12': 131067057115.4, 'm03': 379419590249.80005, 'mu20': 7439941.251379013, 'mu11': 3989097.993609071, 'mu02': 8608236.862088203, 'mu30': 123631672.32175827, 'mu21': 66721478.995661736, 'mu12': -71778847.06811166, 'mu03': -153890589.33666992, 'nu20': 0.10296285178405724, 'nu11': 0.05520593397050295, 'nu02': 0.11913113104071384, 'nu30': 0.01855746134472764, 'nu21': 0.010015081443714638, 'nu12': -0.010774206599494254, 'nu03': -0.023099409797678556} <class 'dict'>
{'m00': 15986.0, 'm10': 6026846.0, 'm01': 5179910.0, 'm20': 2292703160.333333, 'm11': 1952864629.0, 'm02': 1698884573.6666665, 'm30': 879850714149.0, 'm21': 742898718990.0, 'm12': 640491821107.3334, 'm03': 563738081200.0, 'mu20': 20535469.371490955, 'mu11': -1620.4595272541046, 'mu02': 20449217.223528624, 'mu30': -223791.80407714844, 'mu21': 151823.5922050476, 'mu12': 209097.09715557098, 'mu03': -152351.75524902344, 'nu20': 0.08035724088041474, 'nu11': -6.34101194440178e-06, 'nu02': 0.08001972803837157, 'nu30': -6.926194062792776e-06, 'nu21': 4.698830090131295e-06, 'nu12': 6.471403538830498e-06, 'nu03': -4.715176353366703e-06} <class 'dict'>
{'m00': 11396.0, 'm10': 6176598.0, 'm01': 2597707.833333333, 'm20': 3349665027.0, 'm11': 1407949570.5833333, 'm02': 655725464.8333333, 'm30': 1817641012813.0, 'm21': 763562731879.1167, 'm12': 355401284084.75, 'm03': 178062030454.85, 'mu20': 1967338.8985610008, 'mu11': -324.81426215171814, 'mu02': 63580327.29723644, 'mu30': -21712.3154296875, 'mu21': 9988180.769364119, 'mu12': 186586.19526672363, 'mu03': -396148296.0755005, 'nu20': 0.015148662774911266, 'nu11': -2.501095121647356e-06, 'nu02': 0.48957347310563326, 'nu30': -1.5661200090835562e-06, 'nu21': 0.0007204523998327835, 'nu12': 1.3458554191159022e-05, 'nu03': -0.028574371768747265} <class 'dict'>
{'m00': 11560.0, 'm10': 4184863.0, 'm01': 1485772.0, 'm20': 1524366924.3333333, 'm11': 537875136.1666666, 'm02': 203000229.0, 'm30': 558641678337.5, 'm21': 195927630288.0, 'm12': 73490515262.5, 'm03': 29185458885.0, 'mu20': 9394750.564388752, 'mu11': 7292.807151079178, 'mu02': 12038426.579238743, 'mu30': -36898.54187011719, 'mu21': 58255.2828142643, 'mu12': 46557.39966964722, 'mu03': -74896.38109207153, 'nu20': 0.07030230843432154, 'nu11': 5.457315488828541e-05, 'nu02': 0.0900853271874644, 'nu30': -2.568115896721007e-06, 'nu21': 4.0545319755426715e-06, 'nu12': 3.2403664790463073e-06, 'nu03': -5.21274221530133e-06} <class 'dict'>
{'m00': 7136.5, 'm10': 931499.3333333333, 'm01': 837811.3333333333, 'm20': 126603461.91666666, 'm11': 109342970.95833333, 'm02': 104031211.58333333, 'm30': 17834967892.7, 'm21': 14861464047.05, 'm12': 13575875235.816666, 'm03': 13540680151.900002, 'mu20': 5018510.189567342, 'mu11': -13253.86603589356, 'mu02': 5673777.230110094, 'mu30': -177930.16611862183, 'mu21': 1921792.6864708662, 'mu12': 201480.14046394825, 'mu03': -4564410.182851791, 'nu20': 0.09853811951621429, 'nu11': -0.00026023879322029775, 'nu02': 0.11140424502299628, 'nu30': -4.135579833554871e-05, 'nu21': 0.00044667676380089435, 'nu12': 4.682945134828951e-05, 'nu03': -0.0010608927713634498} <class 'dict'>

OpenCV半小时掌握基本操作之对象测量

例 2:


import numpy as np
import cv2

# 读取图片
image = cv2.imread("shape.jpg")
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(image_gray, 0, 255, cv2.THRESH_OTSU)

# 获取轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 遍历每个轮廓
for i, contour in enumerate(contours):

# 面积
   area = cv2.contourArea(contour)

# 外接矩形
   x, y, w, h = cv2.boundingRect(contour)

# 获取论距
   mm = cv2.moments(contour)

# 获取中心
   cx = mm["m10"] / mm["m00"]
   cy = mm["m01"] / mm["m00"]

# 获取
   cv2.circle(image, (np.int(cx), np.int(cy)), 3, (0, 255, 255), -1)
   cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)

# 多变形拟合
   approxCurve = cv2.approxPolyDP(contour, 4, True)
   print(approxCurve.shape)

# 圆圈
   if approxCurve.shape[0] > 10:
       cv2.drawContours(image, contours, i, (0, 255, 0), 2)  # 绿色

# 4-10边形
   if 10 >= approxCurve.shape[0] > 3:
       cv2.drawContours(image, contours, i, (240, 32, 160), 2)  # 紫色

# 三角形
   if approxCurve.shape[0] == 3:
       cv2.drawContours(image, contours, i, (250, 206, 135), 2)  # 蓝色

# 图片展示
cv2.imshow("result", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 保存图片
cv2.imwrite("result2.jpg", image)

输出结果:

(3, 1, 2)
(6, 1, 2)
(7, 1, 2)
(16, 1, 2)
(10, 1, 2)

OpenCV半小时掌握基本操作之对象测量

标签:OpenCV对象测量,python对象测量
0
投稿

猜你喜欢

  • 用Dreamweaver设计自动关闭的网页

    2010-09-02 12:29:00
  • Python3使用pandas模块读写excel操作示例

    2021-06-30 16:34:47
  • MySQL 实现lastInfdexOf的功能案例

    2024-01-20 15:16:51
  • 关于多种方式完美解决Python pip命令下载第三方库的问题

    2023-02-25 13:40:11
  • 在django中自定义字段Field详解

    2023-08-02 19:35:53
  • Python字符串常用方法以及其应用场景详解

    2022-02-15 18:39:53
  • 微信小程序实现翻牌小功能

    2023-07-02 05:18:37
  • python使用jieba实现中文分词去停用词方法示例

    2021-02-04 11:27:17
  • Vue组件渲染与更新实现过程浅析

    2023-07-02 17:00:43
  • 用来将对象持久化的python pickle模块

    2023-11-01 02:28:45
  • ASP,PHP与.NET伪造HTTP-REFERER方法及防止伪造REFERER方法探讨

    2024-04-29 13:57:44
  • linux 安装 mysql 8.0.19 详细步骤及问题解决方法

    2024-01-13 22:31:33
  • 手写一个python迭代器过程详解

    2021-06-29 07:45:23
  • Python抽象类应用详情

    2022-03-24 17:41:13
  • 教你如何在SQL Server计算机列和平均值

    2009-01-20 15:10:00
  • Javascript继承机制的设计思想分享

    2023-08-24 16:29:29
  • 在linux下实现 python 监控usb设备信号

    2022-04-18 15:29:24
  • 一文详解Go中方法接收器的选择

    2024-05-28 15:36:32
  • python目标检测给图画框,bbox画到图上并保存案例

    2023-03-07 07:47:52
  • windows中python实现自动化部署

    2023-06-24 16:04:14
  • asp之家 网络编程 m.aspxhome.com