使用TensorFlow搭建一个全连接神经网络教程
作者:techping 时间:2023-01-10 10:59:20
说明
本例子利用TensorFlow搭建一个全连接神经网络,实现对MNIST手写数字的识别。
先上代码
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
# prepare data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])
# the model of the fully-connected network
weights = tf.Variable(tf.random_normal([784, 10]))
biases = tf.Variable(tf.zeros([1, 10]) + 0.1)
outputs = tf.matmul(xs, weights) + biases
predictions = tf.nn.softmax(outputs)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(predictions),
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# compute the accuracy
correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(ys, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={
xs: batch_xs,
ys: batch_ys
})
if i % 50 == 0:
print(sess.run(accuracy, feed_dict={
xs: mnist.test.images,
ys: mnist.test.labels
}))
代码解析
1. 读取MNIST数据
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
2. 建立占位符
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])
xs 代表图片像素数据, 每张图片(28×28)被展开成(1×784), 有多少图片还未定, 所以shape为None×784.
ys 代表图片标签数据, 0-9十个数字被表示成One-hot形式, 即只有对应bit为1, 其余为0.
3. 建立模型
weights = tf.Variable(tf.random_normal([784, 10]))
biases = tf.Variable(tf.zeros([1, 10]) + 0.1)
outputs = tf.matmul(xs, weights) + biases
predictions = tf.nn.softmax(outputs)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(predictions),
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
使用Softmax函数作为激活函数:
4. 计算正确率
correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(ys, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
5. 使用模型
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={
xs: batch_xs,
ys: batch_ys
})
if i % 50 == 0:
print(sess.run(accuracy, feed_dict={
xs: mnist.test.images,
ys: mnist.test.labels
}))
运行结果
训练1000个循环, 准确率在87%左右.
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
0.1041
0.632
0.7357
0.7837
0.7971
0.8147
0.8283
0.8376
0.8423
0.8501
0.8501
0.8533
0.8567
0.8597
0.8552
0.8647
0.8654
0.8701
0.8712
0.8712
来源:https://blog.csdn.net/techping/article/details/79519398
标签:TensorFlow,全连接,神经网络
0
投稿
猜你喜欢
Python安装spark的详细过程
2021-05-17 09:59:05
Python多线程、异步+多进程爬虫实现代码
2023-07-29 03:28:42
MySQL8.0中binlog的深入讲解
2024-01-16 23:22:02
Python入门之布尔值详解
2023-01-17 06:29:58
基于hashlib模块--加密(详解)
2023-10-08 15:46:29
python列表推导式 经典代码
2021-02-28 09:26:00
利用python如何实现猫捉老鼠小游戏
2023-12-08 06:20:34
sql中时间以5分钟半个小时任意间隔分组的实现方法
2024-01-25 04:23:39
ASP实现GB2312字符与区位码的相互转换
2009-12-28 10:27:00
基于golang channel实现的轻量级异步任务分发器示例代码
2024-05-08 10:13:09
node.js+express+mySQL+ejs+bootstrop实现网站登录注册功能
2023-07-15 17:55:01
asp测字符串长度及截取定长字符串汉字的处理
2007-10-12 13:14:00
Vue Ref全家桶具体用法详解
2024-04-27 15:49:06
基于Golang实现Redis协议解析器
2024-04-27 15:37:41
mysql中profile的使用方法教程
2024-01-16 02:28:52
js特效,页面下雪的小例子
2024-04-22 22:32:21
通过底层源码理解YOLOv5的Backbone
2023-07-15 20:37:01
彻底解决页面文字编码乱码问题
2022-09-17 02:08:49
Python使用RPC例子
2021-04-11 23:26:51
pycharm远程连接服务器并配置python interpreter的方法
2023-03-21 20:36:06