python实现接口并发测试脚本

作者:幸福丶如此 时间:2023-04-20 05:06:15 

常用的网站性能测试指标有:并发数、响应时间、吞吐量、性能计数器等。

1、并发数

并发数是指系统同时能处理的请求数量,这个也是反应了系统的负载能力。

2、响应时间

响应时间是一个系统最重要的指标之一,它的数值大小直接反应了系统的快慢。响应时间是指执行一个请求从开始到最后收到响应数据所花费的总体时间。

3、吞吐量

吞吐量是指单位时间内系统能处理的请求数量,体现系统处理请求的能力,这是目前最常用的性能测试指标。
QPS(每秒查询数)、TPS(每秒事务数)是吞吐量的常用量化指标,另外还有HPS(每秒HTTP请求数)。
跟吞吐量有关的几个重要是:并发数、响应时间。
QPS(TPS),并发数、响应时间它们三者之间的关系是:
QPS(TPS)= 并发数/平均响应时间

4、性能计数器

性能计数器是描述服务器或操作系统性能的一些数据指标,如使用内存数、进程时间,在性能测试中发挥着"监控和分析"的作用,尤其是在分析统统可扩展性、进行新能瓶颈定位时有着非常关键的作用。
Linux中可以使用top或者uptime命令看到当前系统的负载及资源利用率情况。
资源利用率:指系统各种资源的使用情况,如cpu占用率为68%,内存占用率为55%,一般使用"资源实际使用/总的资源可用量"形成资源利用率。

压测脚本(下单的接口):


#!/usr/bin/env python
#-*- coding:utf-8 -*-

import requests,time,json,threading,random

class Presstest(object):
 headers = {
   'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36',
   'Content-Type': 'application/json; charset=UTF-8',
 }
 def __init__(self,login_url,press_url,phone="1376193000",password="123456"):
   self.login_url = login_url
   self.press_url = press_url
   self.phone = phone
   self.password = password
   self.session = requests.Session()
   self.session.headers = self.headers

def login(self):
   '''登陆获取session'''
   data = data = {'t': int(time.time() * 1000), 'userName': self.phone, 'passWord': self.password}
   res = self.session.post(self.login_url,data=json.dumps(data))
   XToken = res.json().get('data').get('companyToken')
   self.session.headers['X-Token'] = XToken

def testinterface(self):
   '''压测接口'''
   self.session.headers['X-UnionId'] = 'of6uw1CUVhP533sQok'
   data = {"id": int(''.join(str(random.choice(range(10))) for _ in range(10))),
       "openId": "oMr0c5LGJjlTc", "addressId": 10, "shipType": "SELF", "totalAmount": 5,
       "receivable": 5, "carts": [
       {"amount": 1, "barcode": "1234567890", "skuId": 1, "spec": "34", "itemAmount": 5, "price": 0,
        "cover": "xxxx-dd.oss-cn-shanghai.aliyuncs.com/dfc91fd067ac464c096c90af33a196a5.png",
        "name": "沙宣洗发水", "packingType": "瓶", "placeOfOrigin": "上海", "productId": "310153323435134976",
        "retailPrice": 5, "suitableAge": "1-100"}], "formId": "the formId is a mock one", "comments": "aa"}
   global ERROR_NUM
   try:
     html = self.session.post(self.press_url, data=json.dumps(data))
     if html.json().get('code') != 0:
       print(html.json())
       ERROR_NUM += 1
   except Exception as e:
     print(e)
     ERROR_NUM += 1

def testonework(self):
   '''一次并发处理单个任务'''
   i = 0
   while i < ONE_WORKER_NUM:
     i += 1
     self.work()
   time.sleep(LOOP_SLEEP)

def run(self):
   '''使用多线程进程并发测试'''
   t1 = time.time()
   Threads = []

for i in range(THREAD_NUM):
     t = threading.Thread(target=self.testonework, name="T" + str(i))
     t.setDaemon(True)
     Threads.append(t)

for t in Threads:
     t.start()
   for t in Threads:
     t.join()
   t2 = time.time()

print("===============压测结果===================")
   print("URL:", self.press_url)
   print("任务数量:", THREAD_NUM, "*", ONE_WORKER_NUM, "=", THREAD_NUM * ONE_WORKER_NUM)
   print("总耗时(秒):", t2 - t1)
   print("每次请求耗时(秒):", (t2 - t1) / (THREAD_NUM * ONE_WORKER_NUM))
   print("每秒承载请求数:", 1 / ((t2 - t1) / (THREAD_NUM * ONE_WORKER_NUM)))
   print("错误数量:", ERROR_NUM)

if __name__ == '__main__':
 login_url = 'https://ds.xxxxx.com/sys/sysUser/login'
 press_url = 'https://ds.xxxxx.com/weshop/order/checkout'
 phone = "1376193000"
 password = "123456"

THREAD_NUM = 1     # 并发线程总数
 ONE_WORKER_NUM = 5   # 每个线程的循环次数
 LOOP_SLEEP = 0.1    # 每次请求时间间隔(秒)
 ERROR_NUM = 0      # 出错数

obj = Presstest(login_url=login_url,press_url=press_url,phone=phone,password=password)
 obj.login()
 obj.run()

输出结果:


===============压测结果===================
URL: https://ds.xxxxx.com/weshop/order/checkout
任务数量: 1 * 5 = 5
总耗时(秒): 1.9810078144073486
每次请求耗时(秒): 0.39620156288146974
每秒承载请求数: 2.5239678327547805
错误数量: 0

来源:https://blog.csdn.net/m0_37886429/article/details/89020455

标签:python,接口,并发测试
0
投稿

猜你喜欢

  • Spark GraphX 分布式图处理框架图算法详解

    2022-11-01 14:01:40
  • Python中常用的os操作汇总

    2022-12-13 08:30:16
  • Golang加权轮询负载均衡的实现

    2024-02-01 04:41:57
  • 利用Python实现图书超期提醒

    2021-03-25 18:58:05
  • Vue+Jwt+SpringBoot+Ldap完成登录认证的示例代码

    2024-05-09 09:38:16
  • Python下使用Trackbar实现绘图板

    2023-12-11 10:13:04
  • javascript实现文字无缝滚动效果

    2024-04-22 22:35:19
  • MySQL创建数据库和创建数据表

    2024-01-26 14:44:55
  • MySQL数据备份方法的选择与思考

    2024-01-19 21:02:50
  • golang接收post和get请求参数处理

    2024-04-25 15:26:54
  • Python(PyS60)实现简单语音整点报时

    2023-07-06 03:05:23
  • Python中shape计算矩阵的方法示例

    2022-04-09 20:34:06
  • 深入理解MySQL重做日志 redo log

    2024-01-13 22:25:36
  • LINUX下Oracle数据导入导出的方法详解

    2023-07-06 15:20:32
  • Python中的fileinput模块的简单实用示例

    2023-06-19 01:09:27
  • SQL server 定时自动备份数据库的图文方法

    2024-01-14 17:55:50
  • 如何理解python面向对象编程

    2023-01-01 20:19:56
  • MySQL如何查看正在运行的SQL详解

    2024-01-22 22:48:48
  • python tkinter GUI绘制,以及点击更新显示图片代码

    2021-07-27 14:11:33
  • 对python指数、幂数拟合curve_fit详解

    2022-12-03 16:28:52
  • asp之家 网络编程 m.aspxhome.com