使用Java8 Stream流的skip + limit实现批处理的方法
作者:南北12345678 时间:2023-11-29 06:17:39
为什么需要 Stream
Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念。它也不同于 StAX 对 XML 解析的 Stream,也不是 Amazon Kinesis 对大数据实时处理的 Stream。Java 8 中的 Stream 是对集合(Collection)对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作(aggregate operation),或者大批量数据操作 (bulk data operation)。Stream API 借助于同样新出现的 Lambda 表达式,极大的提高编程效率和程序可读性。同时它提供串行和并行两种模式进行汇聚操作,并发模式能够充分利用多核处理器的优势,使用 fork/join 并行方式来拆分任务和加速处理过程。通常编写并行代码很难而且容易出错, 但使用 Stream API 无需编写一行多线程的代码,就可以很方便地写出高性能的并发程序。所以说,Java 8 中首次出现的 java.util.stream 是一个函数式语言+多核时代综合影响的产物。
什么是流
Stream不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator。原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作;高级版本的 Stream,用户只要给出需要对其包含的元素执行什么操作,比如 “过滤掉长度大于 10 的字符串”、“获取每个字符串的首字母”等,Stream 会隐式地在内部进行遍历,做出相应的数据转换。Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后即用尽了,就好比流水从面前流过,一去不复返。而和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地、串行化操作。顾名思义,当使用串行方式去遍历时,每个 item 读完后再读下一个 item。而使用并行去遍历时,数据会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。Stream 的并行操作依赖于 Java7 中引入的 Fork/Join 框架(JSR166y)来拆分任务和加速处理过程。Java 的并行 API 演变历程基本如下:
1.0-1.4 中的 java.lang.Thread
5.0 中的 java.util.concurrent
6.0 中的 Phasers 等
7.0 中的 Fork/Join 框架
8.0 中的 Lambda
Stream 的另外一大特点是,数据源本身可以是无限的。
1、一般进行批处理时会将数据加入到一个临时的集合中,当数据量达到一定大小后进行下一步操作,数据量不足时需要进行额外的判断;
2、若使用Java8的Stream流中的 skip + limit 则可以让我们对集合方便快捷的操作,其中:
(1)skip(x):返回丢弃流中的前x个元素后剩下元素组成的新流;若原流中包含的元素个数小于x,则返回空流。
(2)limit(x): 对一个Stream流进行截断操作,获取其前x个元素;若原流中包含的元素个数小于x,那就获取其所有的元素;
3、实例代码如下:
public static void main(String[] args) {
List<Integer> list = new ArrayList<>();
for (int i = 10; i < 36; i++) {
list.add(i);
}
int limit = 10;
for (int offset = 0; offset < list.size(); offset += limit) {
List<Integer> subList = list.stream()
.skip(offset)
.limit(limit)
.collect(Collectors.toList());
System.out.println(subList);
}
}
输出结果:
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
[30, 31, 32, 33, 34, 35]
3、通过结果也可以看出 skip 配合 limit 操作使用时, limit 是最多取出限制的大小,不用再判断最后一批数据量大小不够限定的大小时的处理。
改进版
int j = 0, size = list.size(), batchSize = 100;
while (j < size) {
batchList = list.stream().skip(j).limit(Math.min(j + batchSize, size) - j).collect(Collectors.toList());
j += batchSize;
}
来源:https://www.cnblogs.com/mike-mei/p/16445343.html